Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037309    DOI: 10.1088/1674-1056/25/3/037309
RAPID COMMUNICATION Prev   Next  

Velocity modulation of electron transport through a ferromagnetic silicene junction

Huai-Hua Shao(邵怀华)1,2, Dan Guo(郭丹)1, Ben-Liang Zhou(周本良)1, Guang-Hui Zhou(周光辉)1
1. Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, China;
2. Department of Physics and Electronic Science, Liupanshui Normal University, Liupanshui 553004, China
Abstract  

We address velocity-modulation control of electron wave propagation in a normal/ferromagnetic/normal silicene junction with local variation of Fermi velocity, where the properties of charge, valley, and spin transport through the junction are investigated. By matching the wavefunctions at the normal-ferromagnetic interfaces, it is demonstrated that the variation of Fermi velocity in a small range can largely enhance the total conductance while keeping the current nearly fully valley-and spin-polarized. Further, the variation of Fermi velocity in ferromagnetic silicene has significant influence on the valley and spin polarization, especially in the low-energy regime. It may drastically reduce the high polarizations, which can be realized by adjusting the local application of a gate voltage and exchange field on the junction.

Keywords:  ferromagnetic silicene junction      electron transport      velocity modulation  
Received:  05 November 2015      Revised:  05 December 2015      Accepted manuscript online: 
PACS:  73.43.Nq (Quantum phase transitions)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11274108).

Corresponding Authors:  Guang-Hui Zhou     E-mail:  ghzhou@hunnu.edu.cn

Cite this article: 

Huai-Hua Shao(邵怀华), Dan Guo(郭丹), Ben-Liang Zhou(周本良), Guang-Hui Zhou(周光辉) Velocity modulation of electron transport through a ferromagnetic silicene junction 2016 Chin. Phys. B 25 037309

[1] Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[2] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[3] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[4] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[5] Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G and Wu K H 2012 Phys. Rev. Lett. 109 056804
[6] Chen L, Li H, Feng B J, Ding Z J, Qiu J L, Cheng P, Wu K H and Meng S 2013 Phys. Rev. Lett. 110 085504
[7] Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[8] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[9] Qiu J, Fu H, Xu Y, Oreshkin A I, Shao T, Li H, Meng S, Chen L and Wu K 2015 Phys. Rev. Lett. 114 126101
[10] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[11] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[12] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[13] Liu Y M, Zhou X Y, Zhou M, Long M Q and Zhou G H 2014 J. Appl. Phys. 116 244312
[14] Zhou B H, Liao W H, Zhou B L, Chen K Q and Zhou G H 2010 Eur. Phys. J. B 76 421
[15] Yokoyama T 2013 Phys. Rev. B 87 241409(R)
[16] Wang Y 2014 Appl. Phys. Lett. 104 032105
[17] Kaloni T P, Cheng Y C and Schwingenschlögl U 2013 J. Appl. Phys. 113 104305
[18] Liao W H, Zhou B H, Wang H Y and Zhou G H 2010 Eur. Phys. J. B 76 463
[19] Wang S K and Wang J 2015 Chin. Phys. B 24 037202
[20] Liu G, Wu M S, Ouyang C Y and Xu B 2012 Europhys. Lett. 99 17010
[21] Lay G L, Padova P D, Resta A, Bruhn T and Vogt P 2012 J. Phys. D: Appl. Phys. 45 392001
[22] Cheng G, Liu P F and Li Z T 2013 Chin. Phys. B 22 046201
[23] Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Heiman D, Hone J, Moodera J S and Chen C T 2015 arXiv: 1510.05920
[24] Zhou B H, Chen X W, Zhou B L, Ding K H and Zhou G H 2011 J. Conden. Matter 23 135304
[25] Zhou B L, Zhou B H, Chen X W, Liao W H and Zhou G H 2015 J. Conden. Matter 27 465301
[26] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[27] Raoux A, Polini M, Asgari R, Hamilton A R, Fazio R and MacDonald A H 2010 Phys. Rev. B 81 073407
[28] Pereira J M, Mlinar J V, Peeters F M and Vasilopoulos P 2006 Phys. Rev. B 74 045424
[29] Shao H, Zhou X, Li Y, Liu G and Zhou G 2011 Appl. Phys. Lett. 99 153104
[1] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[2] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[3] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[4] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[5] Fundamental and progress of Bi2Te3-based thermoelectric materials
Min Hong(洪敏), Zhi-Gang Chen(陈志刚), Jin Zou(邹进). Chin. Phys. B, 2018, 27(4): 048403.
[6] Electron transport in Dirac and Weyl semimetals
Huichao Wang(王慧超), Jian Wang(王健). Chin. Phys. B, 2018, 27(10): 107402.
[7] TiO2 composite electron transport layers for planar perovskite solar cells by mixed spray pyrolysis with precursor solution incorporating TiO2 nanoparticles
Jiaqi Tian(田嘉琪), Hongcui Li(李红翠), Haiyue Wang(王海月), Bo Zheng(郑博), Yebin Xue(薛叶斌), Xizhe Liu(刘喜哲). Chin. Phys. B, 2018, 27(1): 018810.
[8] Electron transport properties of TiO2 shell on Al2O3 core in dye-sensitized solar cells
Dongmei Xie(解东梅), Xiaowen Tang(唐小文), Yuan Lin(林原), Pin Ma(马品), Xiaowen Zhou(周晓文). Chin. Phys. B, 2018, 27(1): 017804.
[9] Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour, Mohammad Khanzadeh. Chin. Phys. B, 2017, 26(9): 097203.
[10] Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants
Chang-Sheng Li(李长生), Lei Ma(马磊), Jie-Rong Guo(郭杰荣). Chin. Phys. B, 2017, 26(9): 097301.
[11] Photon-assisted electronic and spin transport through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm interferometer
Jiyuan Bai(白继元), Li Li(李立), Zelong He(贺泽龙), Shujiang Ye(叶树江), Shujun Zhao(赵树军), Suihu Dang(党随虎), Weimin Sun(孙伟民). Chin. Phys. B, 2017, 26(11): 117302.
[12] Quantum transport through a multi-quantum-dot-pair chain side-coupled with Majorana bound states
Zhao-Tan Jiang(江兆潭), Cheng-Cheng Zhong(仲成成). Chin. Phys. B, 2016, 25(6): 067302.
[13] Effect of de-trapping on carrier transport process in semi-insulating CdZnTe
Guo Rong-Rong (郭榕榕), Jie Wan-Qi (介万奇), Zha Gang-Qiang (查钢强), Xu Ya-Dong (徐亚东), Feng Tao (冯涛), Wang Tao (王涛), Du Zhuo-Tong (杜卓同). Chin. Phys. B, 2015, 24(6): 067203.
[14] Dynamic responses of series parallel-plate mesoscopic capacitors to time-dependent external voltage
Wang Jin-Hua (王锦华), Quan Jun (全军). Chin. Phys. B, 2015, 24(11): 117303.
[15] Forward and reverse electron transport properties across a CdS/Si multi-interface nanoheterojunction
Li Yong (李勇), Wang Ling-Li (王伶俐), Wang Xiao-Bo (王小波), Yan Ling-Ling (闫玲玲), Su Li-Xia (苏丽霞), Tian Yong-Tao (田永涛), Li Xin-Jian (李新建). Chin. Phys. B, 2014, 23(8): 087307.
No Suggested Reading articles found!