|
|
Velocity modulation of electron transport through a ferromagnetic silicene junction |
Huai-Hua Shao(邵怀华)1,2, Dan Guo(郭丹)1, Ben-Liang Zhou(周本良)1, Guang-Hui Zhou(周光辉)1 |
1. Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, China;
2. Department of Physics and Electronic Science, Liupanshui Normal University, Liupanshui 553004, China |
|
|
Abstract We address velocity-modulation control of electron wave propagation in a normal/ferromagnetic/normal silicene junction with local variation of Fermi velocity, where the properties of charge, valley, and spin transport through the junction are investigated. By matching the wavefunctions at the normal-ferromagnetic interfaces, it is demonstrated that the variation of Fermi velocity in a small range can largely enhance the total conductance while keeping the current nearly fully valley-and spin-polarized. Further, the variation of Fermi velocity in ferromagnetic silicene has significant influence on the valley and spin polarization, especially in the low-energy regime. It may drastically reduce the high polarizations, which can be realized by adjusting the local application of a gate voltage and exchange field on the junction.
|
Received: 05 November 2015
Revised: 05 December 2015
Accepted manuscript online:
|
PACS:
|
73.43.Nq
|
(Quantum phase transitions)
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274108). |
Corresponding Authors:
Guang-Hui Zhou
E-mail: ghzhou@hunnu.edu.cn
|
Cite this article:
Huai-Hua Shao(邵怀华), Dan Guo(郭丹), Ben-Liang Zhou(周本良), Guang-Hui Zhou(周光辉) Velocity modulation of electron transport through a ferromagnetic silicene junction 2016 Chin. Phys. B 25 037309
|
[1] |
Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[2] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
|
[3] |
Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
|
[4] |
Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
|
[5] |
Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G and Wu K H 2012 Phys. Rev. Lett. 109 056804
|
[6] |
Chen L, Li H, Feng B J, Ding Z J, Qiu J L, Cheng P, Wu K H and Meng S 2013 Phys. Rev. Lett. 110 085504
|
[7] |
Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[8] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[9] |
Qiu J, Fu H, Xu Y, Oreshkin A I, Shao T, Li H, Meng S, Chen L and Wu K 2015 Phys. Rev. Lett. 114 126101
|
[10] |
Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
|
[11] |
Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
|
[12] |
Ezawa M 2012 Phys. Rev. Lett. 109 055502
|
[13] |
Liu Y M, Zhou X Y, Zhou M, Long M Q and Zhou G H 2014 J. Appl. Phys. 116 244312
|
[14] |
Zhou B H, Liao W H, Zhou B L, Chen K Q and Zhou G H 2010 Eur. Phys. J. B 76 421
|
[15] |
Yokoyama T 2013 Phys. Rev. B 87 241409(R)
|
[16] |
Wang Y 2014 Appl. Phys. Lett. 104 032105
|
[17] |
Kaloni T P, Cheng Y C and Schwingenschlögl U 2013 J. Appl. Phys. 113 104305
|
[18] |
Liao W H, Zhou B H, Wang H Y and Zhou G H 2010 Eur. Phys. J. B 76 463
|
[19] |
Wang S K and Wang J 2015 Chin. Phys. B 24 037202
|
[20] |
Liu G, Wu M S, Ouyang C Y and Xu B 2012 Europhys. Lett. 99 17010
|
[21] |
Lay G L, Padova P D, Resta A, Bruhn T and Vogt P 2012 J. Phys. D: Appl. Phys. 45 392001
|
[22] |
Cheng G, Liu P F and Li Z T 2013 Chin. Phys. B 22 046201
|
[23] |
Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Heiman D, Hone J, Moodera J S and Chen C T 2015 arXiv: 1510.05920
|
[24] |
Zhou B H, Chen X W, Zhou B L, Ding K H and Zhou G H 2011 J. Conden. Matter 23 135304
|
[25] |
Zhou B L, Zhou B H, Chen X W, Liao W H and Zhou G H 2015 J. Conden. Matter 27 465301
|
[26] |
Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
|
[27] |
Raoux A, Polini M, Asgari R, Hamilton A R, Fazio R and MacDonald A H 2010 Phys. Rev. B 81 073407
|
[28] |
Pereira J M, Mlinar J V, Peeters F M and Vasilopoulos P 2006 Phys. Rev. B 74 045424
|
[29] |
Shao H, Zhou X, Li Y, Liu G and Zhou G 2011 Appl. Phys. Lett. 99 153104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|