Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 030502    DOI: 10.1088/1674-1056/25/3/030502
GENERAL Prev   Next  

Multi-valued responses and dynamic stability of a nonlinear vibro-impact system with a unilateral non-zero offset barrier

Wei Xu(徐伟)1, Dong-Mei Huang(黄冬梅)1,2, Wen-Xian Xie(谢文贤)1
1. Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA
Abstract  In this paper, multi-valued responses and dynamic properties of a nonlinear vibro-impact system with a unilateral nonzero offset barrier are studied. Based on the Krylov-Bogoliubov averaging method and Zhuravlev non-smooth transformation, the frequency response, stability conditions, and the equation of backbone curve are derived. Results show that in some conditions impact system may have two or four steady-state solutions, which are interesting and not mentioned for a vibro-impact system with the existence of frequency island phenomena. Then, the classification of the steady-state solutions is discussed, and it is shown that the nontrivial steady-state solutions may lose stability by saddle node bifurcation and Hopf bifurcation. Furthermore, a criterion for avoiding the jump phenomenon is derived and verified. Lastly, it is found that the distance between the system's static equilibrium position and the barrier can lead to jump phenomenon under hardening type of nonlinearity stiffness.
Keywords:  vibro-impact system      multi-valued response      frequency island      stability  
Received:  05 August 2015      Revised:  29 September 2015      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472212, 11532011, 11302171, and 11302172).
Corresponding Authors:  Dong-Mei Huang     E-mail:  dongmeihuang1@hotmail.com

Cite this article: 

Wei Xu(徐伟), Dong-Mei Huang(黄冬梅), Wen-Xian Xie(谢文贤) Multi-valued responses and dynamic stability of a nonlinear vibro-impact system with a unilateral non-zero offset barrier 2016 Chin. Phys. B 25 030502

[1] Ibrahim R A 2014 J. Sound Vib. 333 5900
[2] Ibrahim R A 2009 Vibro-Impact Dynamics: Modeling, Mapping and Applications (Berlin: Springer-Verlag)
[3] Thompson J M T 1983 Proc. T. Soc. Lond. A 387 407
[4] Kahraman A and Singh R 1990 J. Sound Vib. 142 49
[5] Ervin E K 2009 J. Eng. Mech. 135 529
[6] Jing H S and Young M 1990 Earthq. Eng. Struct. Dyn. 19 789
[7] Dimentberg M F and Iourtchenko D V 2004 Nonlinear Dyn. 36 229
[8] Shaw S W and Holmes P J 1983 J. Sound Vib. 90 129
[9] Nordmark A B 1991 J. Sound Vib. 145 279
[10] Chatterjee S and Mallik A K 1996 J. Sound Vib. 191 539
[11] Xie J H 1996 Appl. Math. Mech. 17 65
[12] Huang Z L, Liu Z H and Zhu W Q 2004 J. Sound Vib. 275 223
[13] Yin S, Zhu X P and Kaynak O 2015 IEEE T. Ind. Electron. 62 1651
[14] Luo G W, Chu Y D, Zhang Y L and Zhang J G 2006 J. Sound Vib. 298 154
[15] Yin S, Wang G and Yang X 2014 Int. J. Syst. Sci. 45 1375
[16] Rong H W and Wang X D 2009 Phys. Rev. E 80 026604
[17] Rong H W, Wang X D, Xu W and Fang T 2008 Acta Phys. Sin. 327 173 (in Chinese)
[18] Rong H W, Wang X D, Xu W and Fang T 2010 Int. J. Non-Linear Mech. 45 474
[19] Yin S and Huang Z H 2015 IEEEASME T. Mech. 20 2613
[20] Yin S, Li X W, Gao H J and Kaynak O 2015 IEEE T. Ind. Electron. 62 657
[21] Feng J Q, Xu W, Rong H W and Wang R 2009 Int. J. Non-Linear Mech. 44 51
[22] Feng J Q and Xu W 2011 Acta Phys. Sin. 60 080502 (in Chinese)
[23] Li C, Xu W, Wang L and Li D X 2013 Chin. Phys. B 22 110205
[24] Huang D M, Xu W, Liu D and Han Q 2014 J. Vib. Control.
[25] Zhuravlev V F 1976 Mech. Solids 11 23
[26] Schmidt G and Tondl A 1986 Nonlinear Vibrations (Cambridge: Cambridge University Press)
[27] Huang D M, Xu W, Xie W X and Liu Y J 2015 Nonlinear Dyn. 81 641
[28] Rakaric Z and Kovacic I 2013 Commun. Nonlinear Sci. Numer. Simul. 18 1888
[29] Daqaq M F and Vogl G W 2008 Proceeding of 6$th Euromech. Nonlinear Dynamics Conference (Saint Petersburg, Russia)
[30] Deshpande S, Mehta S and Jazar G N 2006 Int. J. Mech. Sci. 48 341
[31] Jazar G N, Houim R, Narimani A and Golnaraghi M F 2006 J. Vib. Control 12 1205
[32] Huang D M, Xu W, Xie W X and Han Q 2015 Chin. Phys. B 24 040502
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
No Suggested Reading articles found!