Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 093401    DOI: 10.1088/1674-1056/24/9/093401
RAPID COMMUNICATION Prev   Next  

A universal function of creep rate

Li Jing-Tian (李菁田)a, Rong Xi-Ming (荣曦明)b, Wang Jian-Lu (王建录)c, Zhang Bang-Qiang (张邦强)c, Ning Xi-Jing (宁西京)a
a Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China;
b Department of Optical Science and Engineer, Fudan University, Shanghai 200433, China;
c Dongfang Turbine Co. Ltd., Deyang 618000, China
Abstract  

In this paper, we derive a universal function from a model based on statistical mechanics developed recently, and show that the function is well fitted to all the available experimental data which cannot be described by any function previously established. With the function predicting creep rate, it is unnecessary to consider which creep mechanism dominates the process, but only perform several experiments to determine the three constants in the function. It is expected that the new function would be widely used in industry in the future.

Keywords:  creep      statistical mechanics      metal and alloys  
Received:  04 January 2015      Revised:  04 May 2015      Accepted manuscript online: 
PACS:  34.20.Cf (Interatomic potentials and forces)  
  62.20.Hg (Creep)  
  81.05.Bx (Metals, semimetals, and alloys)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274073 and 51071048), the Shanghai Leading Academic Discipline Project, China (Grant No. B107), and the Key Discipline Innovative Training Program of Fudan University, China.

Corresponding Authors:  Ning Xi-Jing     E-mail:  xjning@fudan.edu.cn

Cite this article: 

Li Jing-Tian (李菁田), Rong Xi-Ming (荣曦明), Wang Jian-Lu (王建录), Zhang Bang-Qiang (张邦强), Ning Xi-Jing (宁西京) A universal function of creep rate 2015 Chin. Phys. B 24 093401

[1] Babitsky V I and Wittenburg J 2007 Modeling of Creep for Structural Analysis (Berlin: Springer)
[2] Penny R K and Mariott D L 1995 Design for Creep (London: Chapman & Hall)
[3] Evans R W and Wilshire B 1985 Creep of Metals and Alloys (London: Institute of Materials)
[4] Wilshire B and Scharning P J 2007 Scripta Mater. 56 701
[5] Wilshire B and Scharning P J 2008 Int. Mater. Rev. 53 91
[6] Guo J T, Zhang S Z, Yuan C, Zhou W L and Li G S 2003 J. Aeronautical Mater. Suppl. 23 34
[7] Kral P, Dvorak J, Zherebtsov S, Salishchev G, Kvapilova M and Sklenicka V 2013 J. Mater. Sci. 48 4789
[8] Gu Y, Zeng F H, Qi Y L, Xia C Q and Xiong X 2013 Mater. Sci. Eng. A 575 74
[9] Zhu S M, Easton M A, Gibson M A, Dargusch M S and Nie J F 2013 Mater. Sci. Eng. A 578 377
[10] Wilshire B and Battenbough A J 2007 Mater. Sci. Eng. A 443 156
[11] Abdallah Z, Whittaker M T and Bache M R 2013 Intermetallics 38 55
[12] Xie J, Tian S G and Zhou X M 2013 JMEPEG 22 2048
[13] Norton F H 1929 The Creep of Steel at High Temperature (London: McGraw-Hill)
[14] McVetty P G 1943 Trans. ASME 65 761
[15] Garofalo F 1965 Fundamentals of Creep and Creep Rupture in Metals (New York: MacMillan)
[16] Dorn J E 1955 J. Mech. Phys. Solids 3 85
[17] Grant N J and Mullendore A W 1965 Deformation and Fracture at Elevated Temperatures (Boston: MIT Press)
[18] Larson F R and Miller J 1952 Trans. ASME 74 765
[19] Kassner M E and Perez-Prado M T 2004 Fundamentals of Creep in Metals and Alloys (Amsterdam: Elsevier)
[20] Maruyama K, Armaki H G and Yoshimi K 2007 J. Pressure Vessels Piping 84 171
[21] Nie M, Zhang J, Huang F, Liu J W, Zhu X K, Chen Z L and Ouyang L Z 2014 J. Alloys Compd. 588 348
[22] Brunnera M, Huttner R, Bolitz M, Volkl R, Mukherji D, Rosler J, Depka T, Somsen C, Eggeler G and Glatzel U 2010 Mater. Sci. Eng. A 528 650
[23] Shrestha T, Basirat M, Charit I, Potirniche G P and Rink K K 2013 Mater. Sci. Eng. A 565 382
[24] Terada Y, Murata Y, Sato T and Morinaga M 2011 Mater. Chem. Phys. 128 32
[25] Terada Y, Murata Y and Sato T 2013 Mater. Sci. Eng. A 584 63
[26] Maruyama K and Yoshimi K 2007 ASME 2007 Pressure Vessels and Piping Conference 9 631
[27] Tamura M, Abe F, Shiba K, Sakasegawa H and Tanigawa H 2013 Metall. Mater. Trans. A 44 2013
[28] Wilshire B, Scharning P J and Hurst R 2009 Mater. Sci. Eng. A 510-511 3
[29] Ennis P J, Shibli I A, Holdsworth S R and Merckling G 2005 Creep and Fracture in High Temperature Components-Design and Life Assessment Issues (Lancaster: DEStech Publications)
[30] Guo J T 2008 Materials Science and Engineering for Superalloys (Beijing: Science press)
[31] Spingarelli S, Ruano O A, Mehtedi M E and del Valle J A 2013 Mater. Sci. Eng. A 570 135
[32] Lin Z Z, Yu W F, Wang Y and Ning X J 2011 Europhys. Lett. 94 40002
[33] Lin Z Z and Ning X J 2011 Europhys. Lett. 95 47012
[34] Lin Z Z, Zhuang J and Ning X J 2012 Europhys. Lett. 97 27006
[35] Ming C, Lin Z Z, Cao R G, Yu W F and Ning X J 2012 Carbon 50 2651
[36] Lin Z Z, Li W Y and Ning X J 2014 Chin. Phys. B 23 050501
[37] Yu W F, Lin Z Z and Ning X J 2013 Phys. Rev. E 87 062311
[38] Yu W F, Lin Z Z and Ning X J 2013 Chin. Phys. B 22 116802
[39] Zhang G Y, Guo J T and Zhang H 2006 The Chinese Journal of Nonferrous Metals 16 1883
[40] Gu Y F, Cui C, Ping D, Harada H, Fukuda T and Fujioka J 2009 Mater. Sci. Eng. A 510-511 250
[41] Vakili-Tahami F, Sajjadpour M and Attari P 2011 Strain 47 414
[42] Bressers J 1981 Creep and Fatigue in High Temperature Alloys (London: Applied Science Publishers LTD)
[43] Seitz F 1950 Phys. Rev. 79 890
[44] Dash W C 1958 J. Appl. Phys. 29 705
[45] Guo J T, Ranucci D, Picco E and Strocchi M 1983 Metall. Trans. A 14 2329
[46] Tobolová Z and Čadek J 1979 Phil. Mag. 26 1419
[1] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[2] Speedup of self-propelled helical swimmers in a long cylindrical pipe
Ji Zhang(张骥), Kai Liu(刘凯), and Yang Ding(丁阳). Chin. Phys. B, 2022, 31(1): 014702.
[3] Optimizing the atom types of proteins through iterative knowledge-based potentials
Xin-Xiang Wang(汪心享), Sheng-You Huang(黄胜友). Chin. Phys. B, 2018, 27(2): 020503.
[4] Variations in defect substructure and fracture surface of commercially pure aluminum under creep in weak magnetic field
Sergey Konovalov, Dmitry Zagulyaev, Xi-Zhang Chen(陈希章), Victor Gromov, Yurii Ivanov. Chin. Phys. B, 2017, 26(12): 126203.
[5] Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel
Sun Shi-Cheng (孙世成), Sun Gui-Xun (孙贵训), Jiang Zhong-Hao (江忠浩), Ji Chang-Tao (季长涛), Liu Jia-An (刘家安), Lian Jian-She (连建设). Chin. Phys. B, 2014, 23(2): 026104.
[6] Incomplete nonextensive statistics and the zeroth law of thermodynamics
Huang Zhi-Fu (黄志福), Ou Cong-Jie (欧聪杰), Chen Jin-Can (陈金灿). Chin. Phys. B, 2013, 22(4): 040501.
[7] Dislocation-mediated creep process in nanocrystalline Cu
Mu Jun-Wei (穆君伟), Sun Shi-Cheng (孙世成), Jiang Zhong-Hao (江忠浩), Lian Jian-She (连建设), Jiang Qing (蒋青). Chin. Phys. B, 2013, 22(3): 037303.
[8] Traffic of indistinguishable particles in complex networks
Meng Qing-Kuan(孟庆宽) and Zhu Jian-Yang(朱建阳). Chin. Phys. B, 2009, 18(9): 3632-3638.
[9] Statistical-mechanical analysis of multiuser channel capacity with imperfect channel state information
Wang Hui-Song (汪辉松), Zeng Gui-Hua (曾贵华). Chin. Phys. B, 2008, 17(12): 4451-4457.
[10] Density functional approximation for van der Waals fluids: based on hard sphere density functional approximation
Zhou Shi-Qi(周世琦). Chin. Phys. B, 2007, 16(4): 1167-1175.
[11] Interactions of adjacent pulsating, erupting and creeping solitons
Song Li-Jun(宋丽军), Li Lu(李录), and Zhou Guo-Sheng(周国生). Chin. Phys. B, 2007, 16(1): 148-153.
[12] Mirror nodes in growing random networks
Dai Shuo (戴硕), Guo Yun-Jun (郭云均). Chin. Phys. B, 2004, 13(4): 423-427.
[13] Pair correlations in scale-free networks
Huang Zhuang-Xiong (黄壮雄), Wang Xin-Ran (王欣然), Zhu Han (朱涵). Chin. Phys. B, 2004, 13(3): 273-278.
[14] Multi-mode q-oscillator algebras with q2(k+1)=1 and related thermo field dynamics
Gao Ya-Jun (高亚军). Chin. Phys. B, 2002, 11(6): 553-560.
[15] WEAK QUANTUM FLUX CREEP AND STRONG PINNING IN THE NEW SUPERCONDUCTOR MgB2
Zhao Zhi-wen (赵志文), Wen Hai-hu (闻海虎), Li Shi-liang (李世亮), Ni Yong-ming (倪泳明), Ren Zhi-an (任治安), Che Guang-can (车广灿), Yang Hai-peng (杨海朋), Liu Zhi-yong (刘志勇), Zhao Zhong-xian (赵忠贤). Chin. Phys. B, 2001, 10(4): 340-342.
No Suggested Reading articles found!