|
|
Nonlocal symmetries, consistent Riccati expansion integrability, and their applications of the (2+1)-dimensional Broer-Kaup-Kupershmidt system |
Hu Xiao-Rui (胡晓瑞)a, Chen Yong (陈勇)b |
a Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China; b Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China |
|
|
Abstract For the (2+1)-dimensional Broer-Kaup-Kupershmidt (BKK) system, the nonlocal symmetries related to the Schwarzian variable and the corresponding transformation group are found. Moreover, the integrability of the BKK system in the sense of having a consistent Riccati expansion (CRE) is investigated. The interaction solutions between soliton and cnoidal periodic wave are explicitly studied.
|
Received: 06 April 2015
Revised: 11 May 2015
Accepted manuscript online:
|
PACS:
|
02.30.Ik
|
(Integrable systems)
|
|
05.45.Yv
|
(Solitons)
|
|
04.20.Jb
|
(Exact solutions)
|
|
Fund: Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ13A010014) and the National Natural Science Foundation of China (Grant Nos. 11326164, 11401528, 11435005, and 11375090). |
Corresponding Authors:
Hu Xiao-Rui
E-mail: lansexiaoer@163.com
|
Cite this article:
Hu Xiao-Rui (胡晓瑞), Chen Yong (陈勇) Nonlocal symmetries, consistent Riccati expansion integrability, and their applications of the (2+1)-dimensional Broer-Kaup-Kupershmidt system 2015 Chin. Phys. B 24 090203
|
[1] |
Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
|
[2] |
Conte R 1989 Phys. Lett. A 140 383
|
[3] |
Pickering A 1993 J. Phys. A 26 4395
|
[4] |
Gao X N, Lou S Y and Tang X Y 2013 JHEP 05 029
|
[5] |
Lou S Y 2013 arXiv:1308.1140v1 [nlin.SI]
|
[6] |
Liu X Z, Yu J, Ren B and Yang J R 2014 Chin. Phys. B 23 100201
|
[7] |
Liu X Z, Yu J, Ren B and Yang J R 2014 Chin. Phys. B 23 110203
|
[8] |
Lou S Y and Hu X B 1997 J. Phys. A: Math. Gen. 30 L95
|
[9] |
Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
|
[10] |
Cheng X P, Lou S Y, Chen C L and Tang X Y 2014 Phys. Rev. E 89 043202
|
[11] |
Chen J C, Xin X P and Chen Y 2014 J. Math. Phys. 55 053508
|
[12] |
Li Y Q, Chen J C, Chen Y and Lou S Y 2014 Chin. Phys. Lett. 31 010201
|
[13] |
Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
|
[14] |
Hu X R and Chen Y 2015 Chin. Phys. B 24 030201
|
[15] |
Lou S Y 2015 Stud. Appl. Math. 134 372
|
[16] |
Chen C L and Lou S Y 2013 Chin. Phys. Lett. 30 110202
|
[17] |
Chen C L and Lou S Y 2014 Commun. Theor. Phys. 61 545
|
[18] |
Lou S Y, Cheng X P and Tang X Y 2014 Chin. Phys. Lett. 31 070201
|
[19] |
Yu W F, Lou S Y, Yu J and Hu H W 2014 Chin. Phys. Lett. 31 070203
|
[20] |
Yu W F, Lou S Y, Yu J and Yang D 2014 Commun. Theor. Phys. 62 297
|
[21] |
Jiao X L and Lou S Y 2015 Commun. Theor. Phys. 63 7
|
[22] |
Zhu H P 2013 Nonlinear Dyn. 72 873
|
[23] |
Wang Y Y, Dai C Q and Wang X G 2014 Nonlinear Dyn. 77 1323
|
[24] |
Dai C Q, Wang X G and Zhou G Q 2014 Phys. Rev. A 89 013834
|
[25] |
Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
|
[26] |
Ruan H Y and Chen Y X 1998 Acta Phys. Sin. (Overseas Edn.) 7 241
|
[27] |
Li H M 2003 Commun. Theor. Phys. 39 513
|
[28] |
Lou S Y 2002 J. Phys. A: Math. Gen. 35 10619
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|