Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 086601    DOI: 10.1088/1674-1056/24/8/086601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Surface-charge-governed electrolyte transport in carbon nanotubes

Xue Jian-Ming (薛建明)a b, Guo Peng (郭鹏)a, Sheng Qian (盛倩)a
a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China;
b CAPT, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871, China
Abstract  The transport behavior of pressure-driven aqueous electrolyte solution through charged carbon nanotubes (CNTs) is studied by using molecular dynamics simulations. The results reveal that the presence of charges around the nanotube can remarkably reduce the flow velocity as well as the slip length of the aqueous solution, and the decreasing of magnitude depends on the number of surface charges and distribution. With 1-M KCl solution inside the carbon nanotube, the slip length decreases from 110 nm to only 14 nm when the number of surface charges increases from 0 to 12 e. This phenomenon is attributed to the increase of the solid–liquid friction force due to the electrostatic interaction between the charges and the electrolyte particles, which can impede the transports of water molecules and electrolyte ions. With the simulation results, we estimate the energy conversion efficiency of nanofluidic battery based on CNTs, and find that the highest efficiency is only around 30% but not 60% as expected in previous work.
Keywords:  efficiency      surface charge      slip  
Received:  10 December 2014      Revised:  11 March 2015      Accepted manuscript online: 
PACS:  66.10.-x (Diffusion and ionic conduction in liquids)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  83.50.Lh (Slip boundary effects (interfacial and free surface flows))  
  66.10.cd (Thermal diffusion and diffusive energy transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375031 and 11335003).
Corresponding Authors:  Xue Jian-Ming     E-mail:  jmxue@pku.edu.cn

Cite this article: 

Xue Jian-Ming (薛建明), Guo Peng (郭鹏), Sheng Qian (盛倩) Surface-charge-governed electrolyte transport in carbon nanotubes 2015 Chin. Phys. B 24 086601

[1] Whitby M and Quirk N 2007 Nat. Nanotech. 2 87
[2] Regan B C, Aloni S, Ritchie R O, Dahmen U and Zettl A 2004 Nature 428 924
[3] Holt J, Park H, Wang Y, Stadermann M, Artyukhin A, Grigoropoulos C, Noy N and Bakajin O 2006 Science 312 1034
[4] Bourlon B, Wong J, Miko C, Forro L and Bockrath M 2007 Nat. Nanotech. 2 104
[5] Besteman K, Lee J O, Wiertz F G M, Heering H A and Dekker C 2003 Nano Lett. 3 727
[6] Ghosh S, Sood A K and Kumar N 2003 Science 299 1042
[7] Hummer G, Rasaiah J and Noworyta 2001 Nature 414 188
[8] Kalra A, Garde S and Hummer G 2003 Proc. Natl. Acad. Sci. USA 100 10175
[9] Joseph S and Aluru N R 2008 Nano Lett. 8 452
[10] Majumder M, Chopra N, Andrews R and Hinds B 2005 Nature 438 44
[11] Falk K, Sedlmeier F, Joly L, Netz R and Bocquet L 2010 Nano Lett. 10 4067
[12] Thomas J A and McGaughey A J H 2008 Nano Lett. 8 2788
[13] Sokhan V P, Nicholson D and Quirke N 2002 J. Chem. Phys. 117 8531
[14] Elimelech M and Phillip W A 2011 Science 333 712
[15] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J and Mayes A M 2008 Nature 452 301
[16] Ren Y and Stein D 2008 Nanotechnology 19 195707
[17] Van der Heyden F H J, Bonthuis D, Stein D, Meyer C and Dekker C 2006 Nano Lett. 6 2232
[18] Xie Y B, Wang X W, Xue J M, Jin K, Chen L and Wang Y G 2008 Appl. Phys. Lett. 38 163116
[19] Yan Y, Sheng Q, Wang C M, Xue J M and Chang H C 2013 J. Phys. Chem. C 117 8050
[20] Li J, Gong X, Lu H, Li D, Fang F and Zhou R 2007 Proc. Natl. Acad. Sci. USA 104 3687
[21] Joseph S, Mashl RJ, Jakobsson E and Aluru N R 2003 Nano Lett. 3 1399
[22] Liu L, Qiao Y and Chen X 2008 Appl. Phys. Lett. 92 101927
[23] Goldsmith J and Martens C C 2010 J. Phys. Chem. Lett. 1 528
[24] Titus A B 2010 J. Chem. Phys. 132 164513
[25] Titus A B 2011 J. Chem. Phys. 135 044516
[26] Zhou X, Wang C, Wu F, Feng M, Li J, Lu H and Zhou R 2013 J. Chem. Phys. 138 204710
[27] Plimpton S 1995 J. Comp. Phys. 117 1
[28] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M 1983 J. Chem. Phys. 79 926
[29] Xue J M, Zou X Q, Xie Y B and Wang YG 2009 J. Phys. D: Appl. Phys. 42 105308
[30] Kannam S K, Todd B D, Hansen J S and Daivis P J 2012 J. Chem. Phys. 136 024705
[31] Goldsmith J and Martens C C 2009 Phys. Chem. Chem. Phys. 11 528
[32] Thomas J A and McGaughey A J H 2008 Nano Lett. 8 2788
[33] Daiguji H, Oka Y, Adachi T and Shirono K 2006 Electrochem. Commun. 8 1796
[34] Stein, D, Kruithof M and Dekker C 2004 Phys. Rev. Lett. 93 035901
[35] Xue J M, Xie Y B, Yan Y, Jin K and Wang Y G 2009 BioMicroFluidic. 6 1729
[1] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[4] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[5] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[6] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[7] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[8] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[9] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[10] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[11] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[12] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[13] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[14] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[15] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
No Suggested Reading articles found!