Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060201    DOI: 10.1088/1674-1056/24/6/060201
GENERAL Prev   Next  

The consistent Riccati expansion and new interaction solution for a Boussinesq-type coupled system

Ruan Shao-Qing (阮少卿)a b, Yu Wei-Feng (余炜沣)a c, Yu Jun (俞军)a, Yu Guo-Xiang (余国祥)a
a Department of Physics, Shaoxing University, Shaoxing 312000, China;
b Department of Science, Shaoxing Xingwen Primary School, Shaoxing 312000, China;
c Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  

Starting from the Davey–Stewartson equation, a Boussinesq-type coupled equation system is obtained by using a variable separation approach. For the Boussinesq-type coupled equation system, its consistent Riccati expansion (CRE) solvability is studied with the help of a Riccati equation. It is significant that the soliton–cnoidal wave interaction solution, expressed explicitly by Jacobi elliptic functions and the third type of incomplete elliptic integral, of the system is also given.

Keywords:  consistent Riccati expansion      Boussinesq-type coupled equation system      soliton-cnoidal wave interaction solution  
Received:  26 October 2014      Revised:  08 January 2015      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11275129).

Corresponding Authors:  Yu Jun     E-mail:  junyu@usx.edu.cn
About author:  02.30.Ik; 05.45.Yv

Cite this article: 

Ruan Shao-Qing (阮少卿), Yu Wei-Feng (余炜沣), Yu Jun (俞军), Yu Guo-Xiang (余国祥) The consistent Riccati expansion and new interaction solution for a Boussinesq-type coupled system 2015 Chin. Phys. B 24 060201

[1] Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 298 81
[2] Liu X Z, Yu J, Ren B and Yang J R 2014 Chin. Phys. B 23 100201
[3] Liu X Z, Yu J, Ren B and Yang J R 2014 Chin. Phys. B 23 110203
[4] Jin Y, Jia M and Lou S Y 2013 Chin. Phys. Lett. 30 020203
[5] Qu G Z, Zhang S L and Li Y L 2014 Chin. Phys. B 23 110202
[6] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
[7] Gu C H 1992 Lett. Math. Phys. 26 199
[8] Hirota R 1971 Phys. Rev. Lett. 27 1192
[9] Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[10] Lou S Y 1990 Phys. Lett. A 151 133
[11] Lou S Y, Ruan H Y, Chen D F and Chen W Z 1991 J. Phys. A: Math. Gen. 24 1455
[12] Lou S Y 2013 arXiv: 1308. 5891v2 [nlin.SI]
[13] Yu W F, Lou S Y, Yu J and Hu H W 2014 Chin. Phys. Lett. 31 070203
[14] Ilietarinta J 1990 Phys. Lett. A 149 113
[15] Benney D J and Roskes G J 1969 Stud. Appl. Math. 48 377
[16] Chakravarty S, Kent S L and Newman E T 1996 J. Phys. A. Math. Gen. 29 4209
[18] Lou S Y 1998 Z. Naturforsch 53A 251
[1] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[2] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[3] Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations
Li-Li Huang(黄丽丽), Zhi-Jun Qiao(乔志军), Yong Chen(陈勇). Chin. Phys. B, 2018, 27(2): 020201.
[4] Nonlocal symmetry and exact solutions of the (2+1)-dimensional modified Bogoyavlenskii-Schiff equation
Li-Li Huang(黄丽丽), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(6): 060201.
No Suggested Reading articles found!