Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 054212    DOI: 10.1088/1674-1056/24/5/054212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An improved transmitting multi-layer thin-film filter

Zhang Ying (章瑛)a b, Qi Hong-Ji (齐红基)a, Yi Kui (易葵)a, Wang Yan-Zhi (王胭脂)a, Sui Zhan (隋展)c, Shao Jian-Da (邵建达)a
a Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b University of Chinese Academy of Sciences, Beijing 100039, China;
c Research Center of Laser Fusion, Chinese Academic of Engineering Physics, Mianyang 621900, China
Abstract  The angular resolutions of the phase-shifted Rugate thin-film filters, the ultra-narrow bandpass filters, and a cutoff filter-combination device are discussed, and the electric field distributions of the filters are compared. The results show that the three transmitting multi-layer thin-film filters can realize the same angular resolution, but the electric field in the cutoff filter-combination device is the lowest. Because a lower electric-field distribution corresponds to a higher laser-induced damage threshold of the thin films, the cutoff filter-combination device may replace the traditional spatial filters in high power laser systems.
Keywords:  angular resolution      thin-film filter  
Received:  04 September 2014      Revised:  22 November 2014      Accepted manuscript online: 
PACS:  42.79.Ci (Filters, zone plates, and polarizers)  
  42.79.Wc (Optical coatings)  
Corresponding Authors:  Shao Jian-Da     E-mail:  jdshao@siom.ac.cn
About author:  42.79.Ci; 42.79.Wc

Cite this article: 

Zhang Ying (章瑛), Qi Hong-Ji (齐红基), Yi Kui (易葵), Wang Yan-Zhi (王胭脂), Sui Zhan (隋展), Shao Jian-Da (邵建达) An improved transmitting multi-layer thin-film filter 2015 Chin. Phys. B 24 054212

[1] Menabuoni L and Pini R 2007 Cataract. Refract. Surg. 33 1608
[2] Lee D and Kim J H 2009 Cataract. Refract. Surg. 25 902
[3] Bath P E and Mueller G 1987 Arch. Ophthalmol. 105 1164
[4] Norrby S 2008 Cataract. Refract. Surg. 34 368
[5] Hollick E J, Spalton D J and Meacock W R 1999 Ophthalmology 128 271
[6] Hatayama H, Kato J, Inoue A, Akashi G and Hirai Y 2007 Proceedings of SPIE 6425 on Lasers in Dentistry XIII, March 8, 2007, 64250E-1
[7] Okita T, Hoshino K and Kajiwara I 2006 AIP Conference Proceeding Forth Internation Symposium on Beamed Energy Propulsion, November 15-18, 2005 Nara, Japan, p. 553
[8] Altug H and Vuekovic J 2005 Opt. Express 13 8819
[9] Zheng G W, Shen B J, Tan J C and He Y L 2011 Chin. Opt. Lett. 9 030501
[10] Song D M, Tang Z X, Zhao L, Sui Z, Tang Z X and Zhao L 2013 Chin. Phys. Lett. 30 044206
[11] Bovard B G 1993 Appl. Opt. 32 5427
[12] Baumeister P 1985 Appl. Opt. 24 2687
[13] Johnson W E and Crane R L 1993 Proceeding of SPIE 2046 on Inhomogeneous and Quasi-Inhomogeneous Optical Coatings, August 16, 1993 Quebec City, Canada, p. 88
[14] Southwell W H, Hall R L and Gunning W J 1993 Proceeding of SPIE 2046 on Inhomogeneous and Quasi-Inhomogeneous Optical Coatings, August 16, 1993 Quebec City, Canada, p. 46
[15] Southwell W H 1997 Appl. Opt. 36 314
[16] Zhang J C, Fang M and Shao Y C 2012 Chin. Phys. B 21 054219
[17] Zhang J C, Fang M and Shao Y C 2011 Chin. Phys. B 20 094212
[18] Allen J and Herrington B 1993 Proceeding of SPIE 2046 on Inhomogeneous and Quasi-Inhomogeneous Optical Coatings, August 16, 1993 Quebec City, Canada, p. 126
[19] Zheng G W 2011 Study on Non-focusing Low-pass Spatial Filtering Technology for High-power Laser Beam (Ph. D. Dissertation) (Changsha: National University of Defense Technology) (in Chinese)
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[3] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[4] Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial
Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭). Chin. Phys. B, 2021, 30(11): 114216.
[5] Narrow-band high-transmittance birefringent filter and its application in wide color gamut display
Chi Zhang(张弛), Rui Niu(牛瑞), Wenjuan Li(李文娟), Xiaoshuai Li(李小帅), Hongmei Ma(马红梅), and Yubao Sun(孙玉宝). Chin. Phys. B, 2021, 30(5): 054207.
[6] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[7] Zone plate design for generating annular-focused beams
Yong Chen(陈勇), Lai Wei(魏来), Qiang-Qiang Zhang(张强强), Quan-Ping Fan(范全平), Zu-Hua Yang(杨祖华), and Lei-Feng Cao(曹磊峰)†. Chin. Phys. B, 2020, 29(10): 104202.
[8] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[9] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[10] Extra-narrowband metallic filters with an ultrathin single-layer metallic grating
Ran Wang(王然), Qi-Huang Gong(龚旗煌), Jian-Jun Chen(陈建军). Chin. Phys. B, 2020, 29(6): 064215.
[11] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[12] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[13] Energetic few-cycle pulse compression in gas-filled hollow core fiber with concentric phase mask
Yu Zhao(赵钰), Zhi-Yuan Huang(黄志远), Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2019, 28(6): 064207.
[14] Characterization of focusing performance of spiral zone plates with fractal structure
Hua-Ping Zang(臧华平), Cheng-Long Zheng(郑程龙), Zi-Wen Ji(吉子雯), Quan-Ping Fan(范全平), Lai Wei(魏来), Yong-Jie Li(李永杰), Kai-Jun Mu(牧凯军), Shu Chen(陈述), Chuan-Ke Wang(王传珂), Xiao-Li Zhu(朱效力), Chang-Qing Xie(谢常青), Lei-Feng Cao(曹磊峰), Er-Jun Liang(梁二军). Chin. Phys. B, 2019, 28(6): 064201.
[15] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
No Suggested Reading articles found!