ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Double optomechanical transparency with direct mechanical interaction |
Li Ling-Chao (李凌超), Rao Shi (饶识), Xu Jun (徐俊), Hu Xiang-Ming (胡响明) |
College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China |
|
|
Abstract We present a mechanism for double transparency in an optomechanical system. This mechanism is based on the coupling of a moving cavity mirror to a second mechanical oscillator. Due to the purely mechanical coupling and the radiation pressure, three pathways are established for excitations of the probe photons into the cavity photons. Destructive interference occurs at two different frequencies, leading to double transparency to the probe field. It is the coupling strength between the mechanical oscillators that determines the locations of the transparency windows. Moreover, the normal splitting appears for the generated Stokes field and the four-wave mixing process is inhibited on resonance.
|
Received: 02 September 2014
Revised: 14 November 2014
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178021, 11474118, and 11204099) and the National Basic Research Program of China (Grant No. 2012CB921604). |
Corresponding Authors:
Hu Xiang-Ming
E-mail: xmhu@phy.ccnu.edu.cn
|
About author: 42.50.Gy; 42.50.Wk; 42.50.Pq |
Cite this article:
Li Ling-Chao (李凌超), Rao Shi (饶识), Xu Jun (徐俊), Hu Xiang-Ming (胡响明) Double optomechanical transparency with direct mechanical interaction 2015 Chin. Phys. B 24 054205
|
[1] |
Harris S E 1997 Phys. Today 50 36
|
[2] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[3] |
Marangos J H 1998 J. Mod. Opt. 45 471
|
[4] |
Schmidt H and Imamoglu A 1996 Opt. Lett. 21 1936
|
[5] |
Wang H, Goorskey D and Xiao M 2001 Phys. Rev. Lett. 87 073601
|
[6] |
Han Y, Xiao J T, Liu Y H, Zhang C H, Wang H, Xiao M and Peng K C 2008 Phys. Rev. A 77 023824
|
[7] |
Wan R G, Kou J, Jiang Li, Jiang Y and Gao J Y 2011 Phys. Rev. A 83 033824
|
[8] |
Sun H, Gong S Q, Niu Y P, Jin S Q, Li R X and Xu Z Z 2006 Phys. Rev. B 74 155314
|
[9] |
Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
|
[10] |
Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S and Sully M O 1999 Phys. Rev. Lett. 82 5229
|
[11] |
Phillips D F, Fleischhauer A, Mair A and Walsworth R L 2001 Phys. Rev. Lett. 86 783
|
[12] |
Wu Y 2005 Phys. Rev. A 71 053820
|
[13] |
Liu Y C, Hu Y W, Wong C W, and Xiao Y F 2013 Chin. Phys. B 22 114213
|
[14] |
Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
|
[15] |
Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
|
[16] |
Lin Q, Rosenberg J, Chang D, Camacho R, Eichenfield M, Vahala K J and Painter O 2010 Nat. Photon. 4 236
|
[17] |
Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204
|
[18] |
Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
|
[19] |
Huang S and Agarwal G S 2011 Phys. Rev. A 83 023823
|
[20] |
Han Y, Cheng J and Zhou L 2011 J. Phys. B 44 165505
|
[21] |
Xiong H, Si L G, Zheng A S, Yang X X and Wu Y 2012 Phys. Rev. A 86 013815
|
[22] |
Kronwald A and Marquardt F 2013 Phys. Rev. Lett. 111 133601
|
[23] |
Dong C H, Fiore V, Kuzyk M C and Wang H L 2013 Phys. Rev. A 87 055802
|
[24] |
Yan X B, Gu K H, Fu C. B, Cui C L and Wu J H 2014 Chin. Phys. B 23 114201
|
[25] |
Lukin M D, Yelin D F, Fleischhauer M and Scully M O 1999 Phys. Rev. A 60 3225
|
[26] |
Paspalakis E and Knight P L 2002 Phys. Rev. A 66 015802
|
[27] |
Wang C L, Li A J, Zhou X Y, Kang Z H, Yun J and Gao J Y 2008 Opt. Lett. 33 687
|
[28] |
Wu Y, Payne M G, Hagley E W and Deng L 2004 Opt. Lett. 29 2294
|
[29] |
Jin L H, Gong S Q, Niu Y P, Li R X and Jin S Q 2006 Phys. Lett. A 350 117
|
[30] |
Li Y F, Zhang X Y, Sun J F and Wang Y C 2001 Phys. Lett. A 291 215
|
[31] |
Hou B P, Wang S J, Yu W L and Sun W L 2006 Phys. Lett. A 352 462
|
[32] |
Shahidani S, Naderi M H and Soltanolkotabi M 2013 Phys. Rev. A 88 053813
|
[33] |
Huang S 2014 J. Phys. B 47 055504
|
[34] |
Wang H, Gu X, Liu Y X, Miranowicz A and Nori F 2014 Phys. Rev. A 90 023817
|
[35] |
Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
|
[36] |
Law C K 1995 Phys. Rev. A 51 2537
|
[37] |
Genes C, Vitali D and Tombesi P 2008 New. J. Phys. 10 095009
|
[38] |
Gardiner C W and Zoller P 2000 Quantum Noise
|
[39] |
Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|