Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 044209    DOI: 10.1088/1674-1056/24/4/044209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Application of an Al-doped zinc oxide subcontact layer on vanadium-compensated 6H-SiC photoconductive switches

Zhou Tian-Yu (周天宇)a b, Liu Xue-Chao (刘学超)a, Huang Wei (黄维)a, Dai Chong-Chong (代冲冲)a b, Zheng Yan-Qing (郑燕青)a, Shi Er-Wei (施尔畏)a
a Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China;
b University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Al-doped ZnO thin film (AZO) is used as a subcontact layer in 6H-SiC photoconductive semiconductor switches (PCSSs) to reduce the on-state resistance and optimize the device structure. Our photoconductive test shows that the on-state resistance of lateral PCSS with an n+-AZO subcontact layer is 14.7% lower than that of PCSS without an n+-AZO subcontact layer. This occurs because a heavy-doped AZO thin film can improve Ohmic contact properties, reduce contact resistance, and alleviate Joule heating. Combined with the high transparance characteristic at 532 nm of AZO film, vertical structural PCSS devices are designed and their structural superiority is discussed. This paper provides a feasible route for fabricating high performance SiC PCSS by using conductive and transparent ZnO-based materials.

Keywords:  photoconductive semiconductor switch      SiC      n+-AZO subcontact layer      on-state resistance  
Received:  21 August 2014      Revised:  04 October 2014      Accepted manuscript online: 
PACS:  42.79.Ta (Optical computers, logic elements, interconnects, switches; neural networks)  
  42.70.-a (Optical materials)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: 

Project supported by the Innovation Program of the Shanghai Institute of Ceramics (Grant No. Y39ZC1110G), the Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W10), the Industry-Academic Joint Technological Innovations Fund Project of Jiangsu Province, China (Grant No. BY2011119), the Natural Science Foundation of Shanghai (Grant No. 14ZR1419000), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61404146), and the National High-tech R & D Program of China (Grant Nos. 2013AA031603 and 2014AA032602).

Corresponding Authors:  Liu Xue-Chao     E-mail:  xcliu@mail.sic.ac.cn

Cite this article: 

Zhou Tian-Yu (周天宇), Liu Xue-Chao (刘学超), Huang Wei (黄维), Dai Chong-Chong (代冲冲), Zheng Yan-Qing (郑燕青), Shi Er-Wei (施尔畏) Application of an Al-doped zinc oxide subcontact layer on vanadium-compensated 6H-SiC photoconductive switches 2015 Chin. Phys. B 24 044209

[1] Hashimshony D, Cohen C, Zigler A and Papadopoulos K 1996 Opt. Commun. 124 443
[2] Yuan H, Tang X Y, Zhang Y M, Zhang Y M, Song Q W, Yang F and Wu H 2014 Chin. Phys. B 23 057102
[3] Zheng L, Zhang F, Liu S B, Dong L, Liu X F, Fan Z C, Liu B, Yan G G, Wang L, Zhao W S, Sun G S, He Z and Yang F H 2013 Chin. Phys. B 22 097302
[4] Caporaso G J, Sampayan S, Chen Y J, Blackfield D, Harris J, Hawkins S, Holmes C, Krogh M, Nelson S, Nunnally W, Paul A, Poole B, Rhodes M, Sanders D, Selenes K, Sullivan J, Wang L and Watson J 2007 Proceedings of IEEE Particle Accelerator Conference, June 25-29, 2007, Albuquerque, NM, USA, pp. 857-861
[5] Senitzky B 1987 J. Appl. Phys. 62 4798
[6] Kim A, Zeto R, Youmans R, Kondek C and Weiner M 1991 Proceedings of Conference on Optically Activated Switching, November 5-6, 1990, Boston, MA, USA, pp. 173-178
[7] Loubriel G M, Zutavern F J, Baca A G, Hjalmarson P P, Plut T A, Helgeson W D, OMalley M W, Ruebush M H and Brown D J 1997 IEEE Trans. Plasma Sci. 25 124
[8] Bickermann M, Epelbaum B M, Hofmann D, Straubinger T L, Weingartner R and Winnacker A 2001 J. Cryst. Growth 233 211
[9] Augustine G, Hobgood H M, Balakrishna V, Dunne G and Hopkins R H 1997 Phys. Status Solidi B 202 137
[10] Bickermann M, Hofmann D, Straubinger T L, Weingartner R and Winnacker A 2002 Mater. Sci. Forum 433-436 51
[11] Kelkar K S, Islam N E, Fessler C M and Nunnally W C 2005 J. Appl. Phys. 98 093102
[12] Sudarshan T S, Gradinaru G, Korony G, Mitchel W and Hopkins R H 1995 Appl. Phys. Lett. 67 3435
[13] Zhu K, Johnstone D, Leach J, Fu Y, Morkoc H, Li G and Ganguly B 2007 Superlattices Microstruct. 41 264
[14] Frenzel H, Lajn A, von Wenckstern H, Lorenz M, Schein F, Zhang Z P and Grundmann M 2010 Adv. Mater. 22 5332
[15] Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M and Guo W R 2014 Chin. Phys. B 23 047805
[16] Jang Y R, Yoo K H and Park S M 2010 J. Mater. Sci. Technol. 26 973
[17] Zhu K, Dogan S, Moon Y T, Leach J, Yun F, Johnstone D, Morkoc H, Li G and Ganguly B 2005 Appl. Phys. Lett. 86 261108
[18] Weeks T W, Bremser M D, Ailey K S, Carlson E, Perry W G, Piner E L, ElMasry N A and Davis R F 1996 J. Mater. Res. 11 1011
[19] Bauer A, Krausslich J, Dressler L, Kuschnerus P, Wolf J, Goetz K, Kackell P, Furthmuller J and Bechstedt F 1998 Phys. Rev. B 57 2647
[20] Wu J Q 2009 J. Appl. Phys. 106 011101
[21] Pearton S J, Norton D P, Ip K, Heo Y W and Steiner T 2004 J. Vac. Sci. Technol. B 22 932
[22] Sullivan J S and Stanley J R 2006 Proceedings of the 27th International Power Modulator Symposium and 2006 High Voltage Workshops, May 14-18, Washington DC, USA, pp. 215-218
[23] Hettler C, James C and Dickens J 2009 Proceedings of the 17th IEEE International Pulsed Power Conference, June 28-July 2, 2009, Washington DC, USA, pp. 628-631
[24] James C, Hettler C and Dickens J 2011 IEEE Trans. Electron Dev. 58 508
[25] Wang L N, Xun T, Yang H W, Liu J L and Zhang Y 2014 Rev. Sci. Instrum. 85 044703
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[3] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[4] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[9] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[10] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[11] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[12] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[13] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[14] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[15] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
No Suggested Reading articles found!