|
|
Experiments on trapping ytterbium atoms in optical lattices |
Zhou Min (周敏), Chen Ning (陈宁), Zhang Xiao-Hang (张晓航), Huang Liang-Yu (黄良玉), Yao Mao-Fei (姚茂飞), Tian Jie (田洁), Gao Qi (高琪), Jiang Hai-Ling (蒋海灵), Tang Hai-Yao (唐海瑶), Xu Xin-Ye (徐信业) |
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China |
|
|
Abstract Experiments on trapping ytterbium atoms in various optical lattices are presented. After the two-stage cooling, first in a blue magneto–optical trap and then in a green magneto–optical trap, the ultracold 171Yb atoms are successfully loaded into one-, two-, and three-dimensional optical lattices operating at the Stark-free wavelength, respectively. The temperature, number, and lifetime of cold 171Yb atoms in one-dimensional lattice are measured. After optimization, the one-dimensional lattice with cold 171Yb atoms is used for developing an ytterbium optical clock.
|
Received: 07 July 2013
Revised: 04 August 2013
Accepted manuscript online:
|
PACS:
|
37.10.De
|
(Atom cooling methods)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant Nos. 2012CB821302 and 2010CB922903), the National Natural Science Foundation of China (Grant Nos. 11134003 and 10774044), and the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400). |
Corresponding Authors:
Xu Xin-Ye
E-mail: xyxu@phy.ecnu.edu.cn
|
Cite this article:
Zhou Min (周敏), Chen Ning (陈宁), Zhang Xiao-Hang (张晓航), Huang Liang-Yu (黄良玉), Yao Mao-Fei (姚茂飞), Tian Jie (田洁), Gao Qi (高琪), Jiang Hai-Ling (蒋海灵), Tang Hai-Yao (唐海瑶), Xu Xin-Ye (徐信业) Experiments on trapping ytterbium atoms in optical lattices 2013 Chin. Phys. B 22 103701
|
[1] |
Masao T, Hong F L, Ryoichi H and Hidetoshi K 2005 Nature 435 321
|
[2] |
Boyd M M, Ludlow A D, Blatt S, Foreman S M, Tetsuya I, Zelevinsky T and Ye J 2007 Phys. Rev. Lett. 98 083002
|
[3] |
Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W, Taichenachev A V and Yudin V I 2008 Phys. Rev. Lett. 100 103002
|
[4] |
Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Thomas Z W, Foreman S M and Ye J 2007 Phys. Rev. A 76 022510
|
[5] |
Tetsuya I and Hidetoshi K 2003 Phys. Rev. Lett. 91 053001
|
[6] |
Hidetoshi K, Masao T, Pal’chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
|
[7] |
Ye J, Kimble H J and Hidetoshi K 2008 Science 320 1734
|
[8] |
Baillard X, Fouche M, Le Targat R, Westergaard P G, Lecallier A, Chapelet F, Abgrall M, Rovera G D, Laurent P, Rosenbusch P, Bize S, Santarelli G, Clairon A, Lemonde P, Grosche G, Lipphardt B and Schnatz H 2008 Eur. Phys. J. D 48 11
|
[9] |
Swallows M D, Bishof M, Lin Y G, Blatt S, Martin M J, Rey A M and Ye J 2011 Science 331 1043
|
[10] |
Tomoya A, Masao T and Hidetoshi K 2010 Phys. Rev. A 81 023402
|
[11] |
Lemke N D, Ludlow A D, Barber Z W, Fortier T M, Diddams S A, Jiang Y Y, Jefferts S R, Heavner T P, Parker T E and Oates C W 2009 Phys. Rev. Lett. 103 063001
|
[12] |
Swallows M D, Martin M J, Bishof M, Benko C, Lin Y G, Blatt S, Rey A M and Ye J 2012 IEEE T Ultrason. Ferr. 59 416
|
[13] |
Atsushi Y, Miho F, Motohiro K, Hidekazu H, Shigeo N, Li Y, Tetsuya I, Tetsushi T, Masao T and Hidetoshi K 2011 Appl. Phys. E 4 082203
|
[14] |
McFerran J J, Yi L, Mejri S and Bize S 2010 Opt. Lett. 35 3078
|
[15] |
Qi R, Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett. 102 185301
|
[16] |
Metcalf H J and van der Straten P 2003 J. Opt. Soc. Am. B 20 887
|
[17] |
Xu X Y, Wang W L, Zhou Q H, Li G H, Jiang H L, Chen L F, Ye J, Zhou Z H, Cai Y, Tang H Y and Zhou M 2009 Front. Phys. China 4 160
|
[18] |
Zhao P Y, Xiong Z X, Long Y, He L X and Lü B L 2009 Chin. Phys. Lett. 26 083702
|
[19] |
Jiang H L, Li G H and Xu X Y 2009 Opt. Express 17 16073
|
[20] |
Xu X Y, Thomas H L, Dunn J W, Greene C H, Hall J L, Gallagher A and Ye J 2003 Phys. Rev. Lett. 90 193002
|
[21] |
Beaufils Q, Tackmann G, Wang X, Pelle B, Pelisson S, Wolf P and Pereira dos Santos F 2011 Phys. Rev. Lett. 106 213002
|
[22] |
Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408
|
[23] |
Lemonde P and Wolf P 2005 Phys. Rev. A 72 033409
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|