Please wait a minute...
Chinese Physics, 2007, Vol. 16(3): 766-771    DOI: 10.1088/1009-1963/16/3/034

Theoretical analysis of a relativistic travelling wave tube filled with plasma

Xie Hong-Quan(谢鸿全)a)† and Liu Pu-Kun(刘濮鲲)b)
a School of Science, Southwest University of Science and Technology, Mianyang 621010, China; b Institute of Electronics, Chinese Academy of Sciences,Beijing 100080, China
Abstract  A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relativistic electron beam with the entire system immersed in a strong longitudinal magnetic field. By means of the linear field theory, the dispersion relation for the relativistic travelling wave tube (RTWT) is derived. By numerical computation, the dispersion characteristics of the RTWT are analysed in different cases of various geometric parameters of the slow wave structure and plasma densities. Also the gain versus frequency for three different plasma densities and the peak gain of the tube versus plasma density are analysed. Some useful results are obtained on the basis of the discussion.
Keywords:  RTWT      plasma      annular electron beam      dispersion characteristic      gain  
Received:  30 November 2005      Revised:  11 October 2006      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10347009) and Science Foundation of Education Bureau of Sichuan Province, China (Grand No~2003B019).

Cite this article: 

Xie Hong-Quan(谢鸿全) and Liu Pu-Kun(刘濮鲲) Theoretical analysis of a relativistic travelling wave tube filled with plasma 2007 Chinese Physics 16 766

[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[8] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[9] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[10] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[11] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[12] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[13] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[14] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[15] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
No Suggested Reading articles found!