Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 128710    DOI: 10.1088/1674-1056/24/12/128710
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Energy dependence on the electric activities of a neuron

Song Xin-Lin (宋欣林)a, Jin Wu-Yin (靳伍银)b, Ma Jun (马军)a
a Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China;
b College of Mechano-Electronic Engineering, University of Technology, Lanzhou 730050, China
Abstract  A nonlinear circuit can be designed by using inductor, resistor, capacitor and other electric devices, and the electromagnetic field energy can be released from the circuit in the oscillating state. The generation of spikes or bursting states in neurons could be energetically a costly process. Based on the Helmholtz's theorem, a Hamilton energy function is defined to detect the energy shift induced by transition of electric modes in a Hindmarsh-Rose neuron. It is found that the energy storage is dependent on the external forcing, and energy release is associated with the electric mode. As a result, the bursting state and chaotic state could be helpful to release the energy in the neuron quickly.
Keywords:  Hindmarsh-Rose neuron      Helmholtz's theorem      energy      bursting  
Received:  25 June 2015      Revised:  26 July 2015      Accepted manuscript online: 
PACS:  87.19.lq (Neuronal wave propagation)  
  87.18.Hf (Spatiotemporal pattern formation in cellular populations)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372122 and 11365014).
Corresponding Authors:  Ma Jun     E-mail:  hyperchaos@163.com

Cite this article: 

Song Xin-Lin (宋欣林), Jin Wu-Yin (靳伍银), Ma Jun (马军) Energy dependence on the electric activities of a neuron 2015 Chin. Phys. B 24 128710

[1] Laughlin S B and Attwell D 2001 J. Cereb. Blood Flow. Metab. 21 1133
[2] Harris J J, Jolivet R and Attwell D 2012 Neuron 75 762
[3] Alle H, Roth A and Geiger J R P 2009 Science 325 1405
[4] Bélanger M, Allaman I and Magistretti P J 2011 Cell Metab. 14 724
[5] Wei W and Zuo M 2015 Chin. Phys. B 24 080501
[6] Storace M, Linaro D and de Lange E 2008 Chaos 18 033128
[7] Rech P C 2012 Chin. Phys. Lett. 29 060506
[8] Kitajima H and Yoshihara T 2012 Physica D 241 1804
[9] Wig G S, Schlaggar B L and Petersen S E 2011 Ann. N. Y. Acad. Sci. 1224 126
[10] Huang X H and Hu G 2014 Chin. Phys. B 23 0108703
[11] Ibarz B, Casado J M and Sanjuán M A F 2011 Phys. Rep. 501 1
[12] Wang H X, Wang Q Y and Zheng Y H 2014 Sci. China-Tech. Sci. 57 872
[13] Yı lmaz E, Uzuntarla M, Ozer M and Perc M 2013 Physica A 392 5735
[14] Wang Q Y, Zhang H H, Perc M and Chen G R 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3979
[15] Hu B L, Ma J and Tang J 2013 PLoS One 8 e69251
[16] Ma J, Hu B L, Wang C N and Jin W Y 2013 Nonlinear Dyn. 73 73
[17] Perc M 2008 Phys. Rev. E 78 036105
[18] Qin H X, Ma J, Jin W Y and Wang C N 2014 Commun. Theor. Phys. 62 755
[19] Qin H X, Ma J, Wang C N and Chu R T 2014 Sci. China-Phys. Mech. Astron. 57 1918
[20] Ma J, Wu Y, Wu N J and Guo H Y 2013 Sci. China-Phys. Mech. Astron. 56 952
[21] Wu X Y, Ma J, Yuan L H and Liu Y 2014 Nonlinear Dyn. 75 113
[22] Ren G D, Wu G, Ma J and Chen Y 2015 Acta Phys. Sin. 64 058702 (in Chinese)
[23] Dahasert N, Öztürk I and Kiliç R 2012 Nonlinear Dyn. 70 2343
[24] Chen W, Rolls E T, Gu H G, Zhang J and Feng J F 2015 Brain 138 1382
[25] Jia B, Gu H G and Song S L 2013 Sci. China-Phys. Mech. Astron. 43 518
[26] Gu H G, Pan B B and Xu J 2014 Europhys. Lett. 106 50003
[27] Gu H G and Chen S G 2014 Sci. China-Tech. Sci. 57 864
[28] Gu H G 2013 Chaos 23 023126
[29] Sarasola C, Torrealdea FJ, d'Anjou A, Moujahid A and Graña M 2004 Phys. Rev. E 69 011606
[30] Torrealdea FJ, d'Anjou A, Graña M and Sarasola C 2006 Phys. Rev. E 74 011905
[31] Torrealdea FJ, Sarasola C and d'Anjou A 2009 Chaos, Solitons and Fractals 40 60
[32] Shih-Chiung L, Mayer-Kress G, Sosnoff J J and Newell K M 2005 Acta Psychol. 119 283
[33] Jin X, Chen A H, Gong H Q and Liang P J 2005 Brain Res. 1055 156
[34] Yu L C and Liu L W 2014 Phys. Rev. E 89 032725
[35] Wang H Q, Yu L C and Chen Y 2009 Acta Phys. Sin. 58 5070 (in Chinese)
[36] Torrealdea F J, Sarasola C, d'Anjou A, Moujahid A and de Mendizábal N V 2009 BioSys. 97 60
[37] Moujahid A, d'Anjou A, Torrealdea F J and Torrealdea F 2011 Chaos, Solitons and Fractals 44 929
[38] Hindmarsh J and Rose R 1984 Proc. R. Soc. Lond. Ser. B 221 87
[39] Herz A V M, Gollisch T, Machens C K and Jaeger D 2006 Science 314 80
[40] Wang R B, Zhang Z K, Qu J Y and Cao J T 2011 IEEE T. Neur. Netw. 22 1097
[41] Wang R B, Zhang Z K and Chen G R 2009 Neurocomput. 73 139
[42] Wang R B, Zhang Z K and Chen G R 2008 IEEE T. Neur. Netw. 19 535
[43] Kobe D H 1986 Am. J. Phys. 54 552
[1] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[2] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[5] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[6] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[7] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[8] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[9] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[10] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[11] A 45-μJ, 10-kHz, burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity
Chao Ma(马超), Ke Liu(刘可), Yong Bo(薄勇), Zhi-Min Wang(王志敏), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084206.
[12] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[13] Theoretical and experimental study of phase optimization of tapping mode atomic force microscope
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿). Chin. Phys. B, 2022, 31(7): 076801.
[14] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[15] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
No Suggested Reading articles found!