Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120701    DOI: 10.1088/1674-1056/24/12/120701
GENERAL Prev   Next  

Multistability of delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions

Huang Yu-Jiao (黄玉娇), Hu Hai-Gen (胡海根)
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  

In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results.

Keywords:  complex-valued recurrent neural network      discontinuous real-imaginary-type activation function      multistability      delay  
Received:  12 May 2015      Revised:  27 June 2015      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.30.Ks (Delay and functional equations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61374094 and 61503338) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F030005).

Corresponding Authors:  Huang Yu-Jiao     E-mail:  hyj0507@zjut.edu.cn

Cite this article: 

Huang Yu-Jiao (黄玉娇), Hu Hai-Gen (胡海根) Multistability of delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions 2015 Chin. Phys. B 24 120701

[1] Kwon O M, Kwon J W and Kim S H 2011 Chin. Phys. B 20 050505
[2] Zhang H G, Yang F S, Liu X D and Zhang Q L 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 513
[3] Zhang H G, Wang Z S and Liu D R 2014 IEEE Trans. Neural Netw. Learn. Syst. 25 1229
[4] Lakshmanan S and Balasubramaniam P 2011 Chin. Phys. B 20 040204
[5] Lakshmanan S, Park J H, Rihan F A and Rakkiyappan R 2014 Chin. Phys. B 23 070205
[6] Cheng C Y, Lin K H and Shih C W 2007 Physica D 225 61
[7] Cao J D, Feng G and Wang Y Y 2008 Physica D 237 1734
[8] Huang Y J, Zhang H G and Wang Z S 2012 Chin. Phys. B 21 070701
[9] Zeng Z G, Huang T W and Zheng W X 2010 IEEE Trans. Neural Netw. 21 1371
[10] Zeng Z G and Zheng W X 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 1749
[11] Wang L L and Chen T P 2014 Neural Netw. 53 109
[12] Wang L L and Chen T P 2015 Neurocomputing 152 222
[13] Zhang H G, Huang Y J, Cai T Y and Wang Z S 2014 Int. J. Mod. Phys. B 28 1450118
[14] Jankowski S, Lozowski A and Zurada J M 1996 IEEE Trans. Neural Netw. 7 1491
[15] Lee D L 2006 IEEE Trans. Neural Netw. 17 1341
[16] Hu J and Wang J 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 853
[17] Hirose A and Yoshida S 2012 IEEE Trans. Neural Netw. Learning Syst. 23 541
[18] Zhou B and Song Q 2013 IEEE Trans. Neural Netw. Learning Syst. 24 1227
[19] Chen X and Song Q 2013 Neurocomputing 121 254
[20] Huang Y J, Zhang H G and Wang Z S 2014 Appl. Math. Comput. 229 187
[21] Hirose A 2011 Front. Electr. Electron. Eng. China 6 171
[22] Lee D 2006 IEEE Trans. Neural Netw. 17 1341
[23] Forti M 2007 Int. J. Circuit Theory Appl. 35 105
[24] Bao G and Zeng Z G 2012 Neurocomputing 77 101
[25] Huang Y J, Zhang H G and Wang Z S 2012 Neurocomputing 91 21
[26] Duan L and Huang L 2014 Neurocomputing 123 318
[27] Wen S P, Zeng Z G, Huang T W and Zhang Y D 2014 IEEE Trans. Fuzzy Syst. 22 1704
[28] Wen S P, Zeng Z G, Huang T W, Meng Q G and Yao W 2015 IEEE Trans. Neural Netw. Learn. Syst. 26 1493
[29] Wen S P, Yu X H, Zeng Z G and Wang J J 2015 IEEE Trans. Ind. Electron.
[30] Wen S P, Zeng Z G, Huang T W, Yu X H and Xiao M Q 2015 IEEE Trans. Fuzzy Syst.
[31] Ahlfors L 1979 Complex Analysis (New York: McGraw-Hill)
[32] Filippov A 1988 Differential Equations with Discontinuous Righthand Sides. Mathematics and Its Applications (Soviet Series) (Boston MA: Kluwer Academic)
[33] Yosida K 1978 Functional Analysis (Berlin: Springer-Verlag)
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[5] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[8] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[9] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[10] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[11] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[12] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[13] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[14] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[15] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
No Suggested Reading articles found!