Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 123101    DOI: 10.1088/1674-1056/24/12/123101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Influence of a strong magnetic field on the hydrogen molecular ion using B-spline-type basis-sets

Zhang Yue-Xia (张月霞), Zhang Xiao-Long (张小龙)
Department of Physics, Chongqing University, Chongqing 400044, China
Abstract  

As an improvement on our previous work [J. Phys. B: At. Mol. Opt. Phys. 45 085101 (2012)], an accurate method combining the spheroidal coordinates and B-spline basis is applied to study the ground state 1σg and low excited states 1σu, 1πg,u,1δg,u,2σg of the H2+ in magnetic fields ranging from 109 Gs (1 Gs=10-4 T) to 4.414×1013 Gs. Comparing the one-center method used in our previous work, the present method has a higher precision with a shorter computing time. Equilibrium distances of the states of the H2+ in strong magnetic fields were found to be accurate to 3~5 significant digits (s.d.) and the total energies 6~11 s.d., even for some antibonding state, such as 1πg, which is difficult for the one-center method to give reliable results while the field strength is B≥q1013 Gs. For the large disagreement in previous works, such as the equilibrium distances of the 1πg state at B=109 Gs, the present data may be used as a reference. Further, the potential energy curves (PECs) and the electronic probability density distributions (EPDDs) of the bound states 1σg, 1πu, 1δg and antibonding states 1σu, 1πg, 1δu for B=1, 10, 100, 1000 a.u. (atomic unit) are compared, so that the different influences of the magnetic fields on the chemical bonds of the bound states and antibonding states are discussed in detail.

Keywords:  magnetic field      B-spline      hydrogen molecular ion  
Received:  18 July 2015      Revised:  19 August 2015      Accepted manuscript online: 
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  31.15.ac (High-precision calculations for few-electron (or few-body) atomic systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11204389) and the Natural Science Foundation Project of Chongqing (Grant Nos. CSTC2012jjA50015 and CSTC2012jjA00012).

Corresponding Authors:  Zhang Yue-Xia     E-mail:  zyuex02@cqu.edu.cn

Cite this article: 

Zhang Yue-Xia (张月霞), Zhang Xiao-Long (张小龙) Influence of a strong magnetic field on the hydrogen molecular ion using B-spline-type basis-sets 2015 Chin. Phys. B 24 123101

[1] Zhang Y X, Liu Q and Shi T Y 2012 J. Phys. B: At. Mol. Opt. Phys. 45 085101
[2] Wille U 1988 Phys. Rev. A 38 3210
[3] Guan X X, Li B W and Taylor K T 2003 J. Phys. B: At. Mol. Opt. Phys. 36 3569
[4] Kappes U, Schmelcher P and Pacher T 1994 Phys. Rev. A 50 3775
[5] Kappes U and Schmelcher P 1994 J. Chem. Phys. 100 2878
[6] Kappes U and Schmelcher P 1995 Phys. Rev. A 51 4542
[7] Kappes U and Schmelcher P 1996 Phys. Rev. A 53 3869
[8] Vincke M and Baye D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2605
[9] Kravchenko Y P and Liberman M A 1997 Phys. Rev. A 55 2701
[10] Baye D, Joos de ter Beerst A and Sparenberg J M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 225102
[11] Turbiner A V and López Vieyra J C 2003 Phys. Rev. A 68 012504
[12] Turbiner A V and López Vieyra J C 2004 Phys. Rev. A 69 053413
[13] Turbiner A V and López Vieyra J C 2006 Phys. Rep. 424 309
[14] Schmelcher P and Schweizer W (eds.) 1998 Atoms and Molecules in Strong External Fields (New York: Plenum)
[15] Sanwal D, Pavlov G G, Zavlin V E and Teter M A 2002 Astrophys. Lett. 574 L61
[16] Zhang Y X, Liu Q and Shi T Y 2013 Chin. Phys. Lett. 30 043101
[17] Yulian V V and Alejandro S 2004 J. Phys. B: At. Mol. Opt. Phys. 37 4101
[18] Zhang Y X, Kang S and Shi T Y 2008 Chin. Phys. Lett. 25 3946
[19] Shi T Y, Zhang Z J and Li B W 2004 Mod. Phys. Lett. B 18 113
[20] Kang S, Li J and Shi T Y 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3491
[21] Qiao H X and Li B W 1999 Phys. Rev. A 60 3136
[22] Xi J H, Wu L J, He X H and Li B W 1992 Phys. Rev. A 46 5806
[23] Shi T Y, Qiao H X and Li B W 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L349
[24] Guan X X, Li B W and Taylor K T 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1985
[25] López Vieyra J C, Hess P and Turbiner A V 1997 Phys. Rev. A 56 4496
[26] Larsen D M 1982 Phys. Rev. A 25 1295
[27] Lai D, Salpeter E and Shapiro S L 1992 Phys. Rev. A 45 4832
[28] Vincke M and Baye D 1985 J. Phys. B: At. Mol. Opt. Phys. 18 167
[29] Ozaki J and Hayashi Y 1989 J. Phys. Soc. Jpn. 58 3564
[30] Hu S L and Shi T Y 2013 Chin. Phys. B 22 093101
[31] Baye D, Vincke M and Hesse M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 055005
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[4] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[5] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[10] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[11] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[12] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[13] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[14] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[15] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
No Suggested Reading articles found!