Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110501    DOI: 10.1088/1674-1056/24/11/110501
GENERAL Prev   Next  

Stability of a delayed predator–prey model in a random environment

Jin Yan-Fei (靳艳飞)a, Xie Wen-Xian (谢文贤)b
a Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China;
b Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China
Abstract  

The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Itô interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.

Keywords:  delay-independent stability      predator-prey model      moment equations      environmental noise  
Received:  15 April 2015      Revised:  06 June 2015      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11272051 and 11302172).

Corresponding Authors:  Jin Yan-Fei     E-mail:  jinyf@bit.edu.cn

Cite this article: 

Jin Yan-Fei (靳艳飞), Xie Wen-Xian (谢文贤) Stability of a delayed predator–prey model in a random environment 2015 Chin. Phys. B 24 110501

[1] Mohammed S E A 1984 Stochastic Functional Differential Equations (Boston: Pitman)
[2] Longtin A, Milton J G, Bos J E and Mackey M C;1990 Phys. Rev. A 41 6992
[3] Wang C J, Yang K L and Qu S X;2014 Chin. Phys. B 31 80502
[4] Sun J Q;2012 Probab. Eng. Mech. 29 1
[5] Jin Y F and Hu H Y;2007 Nonlinear Dyn. 50 213
[6] Liu M and Bai C Z;2014 Appl. Math. Comput. 228 563
[7] Liu Z H and Zhu W Q;2014 Eur. Phys. J. B 87 137
[8] Zeng C H, Wang H, Yang T, Han Q L, Zhang C and Tian D 2014 Eur.Phys. J. B 87 137
[9] Yang T, Zhang C, Han Q L, Zeng C H, Wang H, Tian D and Long F 2014 Eur. Phys. J. B 87 136
[10] Zeng C H, Han Q L and Yang T 2013 J. Stat. Mech. Theor. Exp. P10017
[11] Wang Z H and Hu H Y 1999 J. Sound. Vib. 226 57
[12] Hu H Y and Wang Z H 2002 Dynamics of Controlled Mechanical Systems with Delayed Feedback (Heidelberg: Springer)
[13] Mackey M C and Nechaeva I G 1995 Phys. Rev. E 52 3366
[14] Lei J Z and Mackey M C;2007 SIAM. J. Appl. Math. 67 387
[15] Huang C M, Gan S Q and Wang D S;2012 J. Comput. Appl. Math. 236 3514
[16] Wang Z, Li X and Lei J Z;2014 Stoch. Proc. Appl. 124 586
[17] Jin Y F;2012 Physica A 391 1928
[18] Wu S and Ren G;2004 J. Sound. Vib. 270 625
[19] Jin Y F;2015 Chin. Phys. B 24 060502
[20] Saha T and Banerjee M;2008 Differential Equations and Dynamical Systems 16 225
[21] Liu C, Zhang Q L, Li J N and Yue W Q;2014 Appl. Math. Comput. 238 177
[22] Rao F 2011 J. Biomath. 26 35
[23] Harrison G W;1995 Ecology 76 357
[24] May R M 2001 Stability and Complexity in Model Ecosystems (Princeton: Princeton University Press)
[25] Martin A and Ruan S;2001 J. Math. Biol. 43 247
[26] Gardiner C W 1985 Handbook of Stochastic Methods (Berlin: Springer)
[1] Stochastic responses of tumor—immune system with periodic treatment
Dong-Xi Li(李东喜), Ying Li(李颖). Chin. Phys. B, 2017, 26(9): 090203.
[2] Moment stability for a predator-prey model with parametric dichotomous noises
Jin Yan-Fei (靳艳飞). Chin. Phys. B, 2015, 24(6): 060502.
[3] Influence of the environmental noise on determining the period of a torsion pendulum
Luo Jie (罗杰), Tian Yuan (田苑), Shao Cheng-Gang (邵成刚), Wang Dian-Hong (王典洪). Chin. Phys. B, 2015, 24(3): 030401.
No Suggested Reading articles found!