Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 108801    DOI: 10.1088/1674-1056/24/10/108801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis of the interdigitated back contact solar cells: The n-type substrate lifetime and wafer thickness

Zhang Wei (张巍)a, Chen Chen (陈晨)a, Jia Rui (贾锐)a, Sun Yun (孙昀)a, Xing Zhao (邢钊)a, Jin Zhi (金智)a, Liu Xin-Yu (刘新宇)a, Liu Xiao-Wen (刘晓文)b
a Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
b Xinjiang Vocation & Technical College of Construction, Wulumuqi 830026, China
Abstract  The n-type silicon integrated-back contact (IBC) solar cell has attracted much attention due to its high efficiency, whereas its performance is very sensitive to the wafer of low quality or the contamination during high temperature fabrication processing, which leads to low bulk lifetime τbulk . In order to clarify the influence of bulk lifetime on cell characteristics, two-dimensional (2D) TCAD simulation, combined with our experimental data, is used to simulate the cell performances, with the wafer thickness scaled down under various τbulk conditions. The modeling results show that for the IBC solar cell with high τbulk, (such as 1 ms-2 ms), its open-circuit voltage Voc almost remains unchanged, and the short-circuit current density Jsc monotonically decreases as the wafer thickness scales down. In comparison, for the solar cell with low τbulk (for instance, <500 s) wafer or the wafer contaminated during device processing, the Voc increases monotonically but the Jsc first increases to a maximum value and then drops off as the wafer's thickness decreases. A model combing the light absorption and the minority carrier diffusion is used to explain this phenomenon. The research results show that for the wafer with thinner thickness and high bulk lifetime, the good light trapping technology must be developed to offset the decrease in Jsc.
Keywords:  lifetime      wafer thickness      interdigitated back contact solar cells      technology computer-aided design  
Received:  09 January 2015      Revised:  18 March 2015      Accepted manuscript online: 
PACS:  88.40.fc (Modeling and analysis)  
Fund: Project supported by the Chinese Ministry of Science and Technology Projects (Grant Nos. 2012AA050304 and Y0GZ124S01), the National Natural Science Foundation of China (Grant Nos. 11104319, 11274346, 51202285, 51402347, and 51172268), and the Fund of the Solar Energy Action Plan from the Chinese Academy of Sciences (Grant Nos. Y3ZR044001 and Y2YF014001).
Corresponding Authors:  Jia Rui     E-mail:  Jiarui@ime.ac.cn

Cite this article: 

Zhang Wei (张巍), Chen Chen (陈晨), Jia Rui (贾锐), Sun Yun (孙昀), Xing Zhao (邢钊), Jin Zhi (金智), Liu Xin-Yu (刘新宇), Liu Xiao-Wen (刘晓文) Analysis of the interdigitated back contact solar cells: The n-type substrate lifetime and wafer thickness 2015 Chin. Phys. B 24 108801

[1] ITRPV, "International Technology Roadmap for Photovoltaic (ITRPV) 2013 Results," 2013
[2] Cousins P, Smith D, Luan H C, Manning J, Dennis T, Waldhauer A, Wilson K, Harley G and Mulligan W 2010 35th IEEE Photovoltaic Specialists Conference (PVSC2010), June 20-25, 2010, Honolulu, Hawaii, USA, p. 000275
[3] Aleman M, Das J, Janssens T, Pawlak B, Posthuma N, Robbelein J, Singh S, Baert K, Poortmans J and Fernandez J 2012 Energy Procedia 2 7638
[4] Garner C, Nasby R and Sexton F 1980 Electron. Dev. Lett. 1 256
[5] Granek F 2009 "High-efficiency back-contact back-junction silicon solar cells", Ph. D. Dissertation (Freiburg im Breisgau: Fraunhofer Institut für Solare Energiesysteme)
[6] Zhou C L, Wang W J, Li H L, Zhao L and Diao H W 2008 Chin. Phys. Lett. 25 3005
[7] Silvaco 2000 International m2000 A. U. Manual, Vol. 95054
[8] Kim U C and Jiang X Q 2012 Chin. Phys. Lett. 29 067301
[9] Schmidt J, Merkle A, Brendel R, Hoex B, Van de Sanden M and Kessels W 2008 Progphotovoltaics 16 461
[10] Griffin P B, Plummer J D and Deal M D 2000 Silicon VLSI technology: fundamentals, practice, and modeling (Newyork: Prentice Hall Inc.) p. 102
[11] Bowden S, Yelundur V and Rohatgi A 2002 29th IEEE Photovoltaic Specialists Conference (PVSC2002), May 19-24, 2002, Los Angeles, New Orleans, USA, p. 371
[12] Liu E K, Zhu B S and Luo J S 2011 The Physics of Semiconductor (Beijing: Publishing House of Electronics Industry) p. 56 (in Chinese)
[13] Gong C, Simoen E, Posthuma N, Van Kerschaver E, Poortmans J and Mertens R 2010 Appl. Phys. Lett. 96 103507"
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[3] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[4] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[5] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[6] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[7] Vibronic spectra of aluminium monochloride relevant to circumstellar molecule
Jian-Gang Xu(徐建刚), Cong-Ying Zhang(张聪颖), Yun-Guang Zhang(张云光). Chin. Phys. B, 2020, 29(3): 033102.
[8] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[9] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[10] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[11] Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide
Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛). Chin. Phys. B, 2017, 26(9): 098103.
[12] Study on irradiation-induced defects in GaAs/AlGaAs core-shell nanowires via photoluminescence technique
Li-Ying Tan(谭立英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶). Chin. Phys. B, 2017, 26(8): 086201.
[13] Proton radiation effect on GaAs/AlGaAs core-shell ensemble nanowires photo-detector
Li-Ying Tan(谭丽英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶). Chin. Phys. B, 2017, 26(8): 086202.
[14] Temperature-dependent photoluminescence of size-tunable ZnAgInSe quaternary quantum dots
Qi Ding(丁琪), Xiao-Song Zhang(张晓松), Lan Li(李岚), Jian-Ping Xu(徐建萍), Ping Zhou(周平), Xiao-Fei Dong(董晓菲), Ming Yan(晏明). Chin. Phys. B, 2017, 26(6): 067804.
[15] Variation of passivation behavior induced by sputtered energetic particles and thermal annealing for ITO/SiOx/Si system
Ming Gao(高明), Hui-Wei Du(杜汇伟), Jie Yang(杨洁), Lei Zhao(赵磊), Jing Xu(徐静), Zhong-Quan Ma(马忠权). Chin. Phys. B, 2017, 26(4): 045201.
No Suggested Reading articles found!