Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 015203    DOI: 10.1088/1674-1056/24/1/015203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Tunable terahertz plasmon in grating-gate coupled graphene with a resonant cavity

Yan Bo (闫博)a b, Yang Xin-Xin (杨昕昕)b, Fang Jing-Yue (方靖岳)a, Huang Yong-Dan (黄永丹)b, Qin Hua (秦华)b, Qin Shi-Qiao (秦石乔)c
a College of Science, National University of Defense Technology, Changsha 410073, China;
b Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
c Opto-electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  

Plasmon modes in graphene can be tuned into resonance with an incident terahertz electromagnetic wave in the range of 1-4 THz by setting a proper gate voltage. By using the finite-difference-time-domain (FDTD) method, we simulate a graphene plasmon device comprising a single-layer graphene, a metallic grating, and a terahertz cavity. The simulations suggest that the terahertz electric field can be enhanced by several times due to the grating-cavity configuration. Due to this near-field enhancement, the maximal absorption of the incident terahertz wave reaches up to about 45%.

Keywords:  finite-difference-time-domain simulation      graphene      plasmon      terahertz  
Received:  18 August 2014      Revised:  11 October 2014      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  52.40.-w (Plasma interactions (nonlaser))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  87.50.U-  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61271157), Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 1301054B), and Suzhou Industry and Technology Bureau, China (Grant No. ZXG2012024).

Corresponding Authors:  Qin Hua     E-mail:  hqin2007@sinano.ac.cn

Cite this article: 

Yan Bo (闫博), Yang Xin-Xin (杨昕昕), Fang Jing-Yue (方靖岳), Huang Yong-Dan (黄永丹), Qin Hua (秦华), Qin Shi-Qiao (秦石乔) Tunable terahertz plasmon in grating-gate coupled graphene with a resonant cavity 2015 Chin. Phys. B 24 015203

[1] Chen H T, Padilla W J, Zide Joshua M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[2] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1494
[3] Wu H Q, Linghu C Y, Lu H M and Qian H 2013 Chin. Phys. B 22 098106
[4] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[5] Ryzhii V 2006 Phys. Rev. B 45 923
[6] Ryzhii V, Satou A and Otsuji T 2007 Appl. Phys. 101 024509
[7] Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245
[8] Hwang E H and Sarma S D 2007 Phys. Rev. B 75 205418
[9] Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
[10] Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P and Xia F N 2012 Nat. Nanotechnol. 80 330
[11] Zhu X L, Yan W, Jepsen P U, Hansen O, Mortensen N A and Xiao S S 2013 Appl. Phys. Lett. 102 131101
[12] Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V and Tredicucci A 2012 Nat. Mater. 11 865
[13] Rahm M, Li J S and Padilla W J 2013 Journal of Infrared, Millimeter and Terahertz Waves 34 1
[14] Huang Y D, Qin H, Zhang B S, Wu J B, Zhou G C and Jin B B 2013 Appl. Phys. Lett. 102 253106
[15] Nogajewski K, Lusakowski J, Knap W, Popov V V, Teppe F, Rumyantsev S L and Shur M S 2011 Appl. Phys. Lett. 99 213501
[16] Dyer G C, Aizin G R, Preu S, Vinh N Q, Allen S J, Reno J L and Shaner E A 2012 Phys. Rev. Lett. 109 126803
[17] Nienhuys H K and Sundstrom V 2005 Appl. Phys. Lett. 87 012101
[18] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and BanerjeeSeyoung S K 2009 Appl. Phys. Lett. 94 062107
[19] Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749
[20] Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G and Mueller T 2012 Nano Lett. 12 2773
[21] Fateev D V, Popov V V and Shur M S 2010 Journal of Semiconductors 44 1406
[22] Braakman R and Blake G A 2011 Appl. Phys. Lett. 109 063102
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[7] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[8] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[9] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[10] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[11] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[12] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[13] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[14] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!