Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 075205    DOI: 10.1088/1674-1056/23/7/075205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect of passive structure and toroidal rotation on resistive wall mode stability in the EAST tokamak

Liu Guang-Jun (刘广君)a b, Wan Bao-Nian (万宝年)a, Sun You-Wen (孙有文)a, Liu Yue-Qiang (刘钺强)c, Guo Wen-Feng (郭文峰)a, Hao Guang-Zhou (郝广周)d, Ding Si-Ye (丁斯晔)a, Shen Biao (沈飙)a, Xiao Bing-Jia (肖炳甲)a, Qian Jin-Ping (钱金平)a
a Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
b Luoyang Optoelectro Technology Development Center, Luoyang 471009, China;
c Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom;
d Southwestern Institute of Physics, Chengdu 610041, China
Abstract  If βN exceeds βNno-wall, the plasma will be unstable because of external kink and resistive wall mode (RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in the experimental advanced superconducting tokamak (EAST) are simulated with CHEASE and MARS codes. A model using a one-dimensional (1D) surface to present the effect of the passive plate is proved to be credible. The no wall βN limit is about 3li, and the ideal wall βN limit is about 4.5li on EAST. It is found that the rotation near the q=2 surface and the plasma edge affects the RWM more.
Keywords:  resistive wall mode      passive structure      rotation  
Received:  07 November 2013      Revised:  26 December 2013      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.35.Qz (Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.))  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2012GB105000, 2011GB101000, 2011GB107000, and 2013013GB102000) and the National Natural Science Foundation of China (Grant Nos. 10725523, 10721505, 10090212, 111005037, and 11205199).
Corresponding Authors:  Qian Jin-Ping     E-mail:  jpqian@ipp.ac.c
About author:  52.55.Fa; 52.35.Qz; 52.65.Kj

Cite this article: 

Liu Guang-Jun (刘广君), Wan Bao-Nian (万宝年), Sun You-Wen (孙有文), Liu Yue-Qiang (刘钺强), Guo Wen-Feng (郭文峰), Hao Guang-Zhou (郝广周), Ding Si-Ye (丁斯晔), Shen Biao (沈飙), Xiao Bing-Jia (肖炳甲), Qian Jin-Ping (钱金平) Effect of passive structure and toroidal rotation on resistive wall mode stability in the EAST tokamak 2014 Chin. Phys. B 23 075205

[1] Taylor T S 1997 Plasma Physics and Controlled Fusion 39 B47
[2] Kikuchi M and Azumi M 2012 Rev. Mod. Phys. 84 1807
[3] Chu M S and Okabayashi M 2010 Plasma Physics and Controlled Fusion 52 123001
[4] Wan Y X, Li J G and Weng P D 2006 21st IAEA Fusion Energy Conf., Chengdu, China
[5] Wan B N 2009 Nuclear Fusion 49 104011
[6] Wu B, Wang J F, Li J B, Wang J and Hu C D 2011 Fusion Engineering and Design 86 947
[7] Lütjens H, Bondeson A and Sauter O 1996 Computer Physics Communications 97 219
[8] Liu Y Q, Bondeson A, Fransson C M, Lennartson B and Breitholtz C 2000 Physics of Plasmas 7 3681
[9] Bondeson A, Liu Y Q, Gregoratto D, Gribov Y and Pustovitov V D 2002 Nuclear Fusion 42 768
[10] Xia X N, Liu Y, Liu C, He Y L and Xia G L 2013 Chin. Phys. B 22 055203
[11] Qian J P, Wan B N, Shen B, Walker M L, Humphreys D A and Xiao B J 2009 Chin. Phys. B 18 2432
[12] Ji X, Song Y T, Wu S T, Wang Z B, Shen G, Liu X F, Cao L, Zhou Z B, Peng X B and Wang C H 2012 Plasma Science and Technology 14 855
[13] Liu G J, Wan B N, Qian J P, Sun Y W, Xiao B J, Shen B, Luo Z P, Ji X and Chen S L 2012 Chin. Phys. B 21 085201
[14] Politzer P A, Hyatt A W, Luce T C, Perkins F W, Prater R, Turnbull A D, Brennan D P, Ferron J R, Greenfield C M and Jayakumar J 2005 Nuclear Fusion 45 417
[15] Gregoratto D, Bondeson A, Chu M S and Garofalo A M 2001 Plasma Physics and Controlled Fusion 43 1425
[16] Bondeson A, Liu Y Q, Gregoratto D, Fransson C M and Gribov Y 2003 Plasma Physics and Controlled Fusion 45 A253
[17] Chu M S, Greene J M, Jensen T H, Miller R L, Bondeson A, Johnson E W and Mauel M E 1995 Physics of Plasmas 2 2236
[1] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[2] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[3] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[4] Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅). Chin. Phys. B, 2022, 31(4): 044301.
[5] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[6] Amplitude and rotation of the ellipticity of harmonicsfrom a linearly polarized laser field
Ping Li(李萍), Na Gao(高娜), Rui-Xian Yu(蔚瑞贤), Jun Wang(王俊), Su-Yu Li(李苏宇), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2022, 31(10): 103303.
[7] Generation of diffraction-free vectorial elliptic hollow beams with space-varying inhomogeneous polarizations
Hui-Rong Li(李会容), Peng-Yi Zhao(赵朋义), and Jian-Ping Yin(印建平). Chin. Phys. B, 2021, 30(8): 084204.
[8] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[9] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[10] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[11] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[12] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[13] Photoelectron momentum distributions of single-photon ionization under a pair of elliptically polarized attosecond laser pulses
Hui-Fang Cui(崔会芳), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2020, 29(7): 074203.
[14] Electrohydrodynamic behaviors of droplet under a uniform direct current electric field
Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程). Chin. Phys. B, 2020, 29(3): 034703.
[15] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
No Suggested Reading articles found!