Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 074207    DOI: 10.1088/1674-1056/19/7/074207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single-atom entropy squeezing and quantum entanglement in Tavis--Cummings model with atomic motion

Zou Yan (邹艳)
Department of Physics, Dezhou University, Dezhou 253023, China Key Biophysics Laboratory in Universities of Shandong, Dezhou 253023, China
Abstract  We examine the single-atom entropy squeezing and the atom—field entanglement in a system of two moving two-level atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculations indicate that the squeezing period, the squeezing time and the maximal squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure. The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field. Moreover, there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.
Keywords:  atomic entropy squeezing      quantum reduced entropy      Tavis--Cummings model      atomic motion and field-mode structure  
Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
Fund: Project supported by the Science and Technology Program of Dezhou, Shandong Province, China (Grant No. 20080153) and the Scientific Research Fund of Dezhou University, China (Grant No. 07024).

Cite this article: 

Zou Yan (邹艳) Single-atom entropy squeezing and quantum entanglement in Tavis--Cummings model with atomic motion 2010 Chin. Phys. B 19 074207

[1] Wineland D J, Bollinger J J and Itano W M 1994 Phys. Rev. A bf50 67
[2] Sorensen J L and Molmer K 1999 Phys. Rev. Lett. bf83 2274
[3] Kang D P, Liao Q H, Ahamd M A, Wang Y Y and Liu S T 2010 Chin. Phys. B bf19 014206
[4] Su X L, Jia X J, Xie C D and Peng K C 2008 Sci. China Ser. G-Phys. Mech. Astron. bf51 1
[5] Zhang J, Shao B and Zou J 2009 Chin. Phys. B bf18 1517
[6] Zhou B J, Liu X J, Zhou Q P and Liu M W 2007 Chin. Phys. bf16 0420
[7] Liu X J, Zhou B J, Fang M F and Zhou Q P 2006 Acta Phys. Sin. bf55 0704 (in Chinese)
[8] Walls D F and Zoller P 1981 Phys. Rev. Lett. bf47 709
[9] Kuang L M, Wang F B and Zhou Y G 1994 J. Mod. Opt. bf47 1307
[10] Wu Y and Yang X X 1997 Phys. Rev. Lett. bf78 3086
[11] Furusawa A, Sorensen J, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science bf282 706
[12] Ralph T C 2000 Phys. Rev. A bf61 010303(R)
[13] Hillery M 2000 Phys. Rev. A bf61 022309
[14] Ban M 1999 J. Opt. B: Quant. Semiclass. Opt. bf1 L9
[15] Fang M F, Zhou P and Swain S 2000 J. Mod. Opt. bf47 1043
[16] Faisal A A El-Orany 2007 quant-ph/070375v1
[17] Bialynicki B I and Mycielski J 1975 Commun. Math. Phys. bf44 129
[18] Deutsch D 1983 Phys. Rev. Lett. bf50 631
[19] Bennett C H and Divincenzo D P 2000 Nature bf404 247
[20] Zhou C Q and Zhu S N 2005 Acta Phys. Sin. bf54 1184 (in Chinese)
[21] Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F and Guo G C 2009 Chin. Sci. Bull. bf54 2991
[22] Wang Y H and Song H S 2009 Chin. Sci. Bull. bf54 2599
[23] Liu W Y, Yang Z Y and An Y Y 2008 Sci. China Ser. G-Phys. Mech. Astron. bf51 1264
[24] Zou Y and Li Y P 2009 Chin. Phys. B bf18 2794
[25] Huo W Y and Long G L 2008 New J. Phys. bf10 013026
[26] Huo W Y and Long G L 2008 Appl. Phys. Lett. bf92 133102
[27] Tavis M and Cummings F W 1968 Phys. Rev. bf170 379
[28] Joshi A 1991 Phys. Rev. A bf44 2135
[29] Bogoliubov N M, Bullough R K and Timonen J 1996 J. Phys. A: Math. Gen. bf29 6305
[30] Kilin S Y and Krinitskaya T B 1993 Phys. Rev. A 48 3870
[31] Wang Z C 2006 Acta Phys. Sin. bf55 192 (in Chinese)
[32] Chen L, Shao X Q and Zhang S 2009 Chin. Phys. B bf18 0888
[33] Guo L and Liang X T 2009 Acta Phys. Sin. bf58 50 (in Chinese)
[34] Phoenix S J D and Knight P L 1991 Phys. Rev. A 44 6023
[35] Araki H and Lieb E 1970 Commun. Math. Phys. bf18 160
[36] Ai Q, Li Y, Long G L and Sun C P 2008 Eur. Phys. J. D bf48 293
[1] Quantum entanglement between the two-mode fields and atomic entropy squeezing in the system of a moving atom interacting with two-mode entangled coherent field
Zou Yan(邹艳) and Li Yong-Ping(李永平). Chin. Phys. B, 2009, 18(7): 2794-2800.
[2] Entropy squeezing of a moving atom and control of noise of the quantum mechanical channel via the two-photon process
Zhou Bing-Ju(周并举), Liu Xiao-Juan(刘小娟), Zhou Qing-Ping(周清平), and Liu Ming-Wei(刘明伟). Chin. Phys. B, 2007, 16(2): 420-428.
[3] Preparation and control of entangled states in the two-mode coherent fields interacting with a moving atom via two-photon process
Liu Xiao-Juan(刘小娟), Zhou Bing-Ju(周并举), Liu Ming-Wei (刘明伟), and Li Shou-Cun(李寿存). Chin. Phys. B, 2007, 16(12): 3685-3691.
[4] Effect of an external radiation field on the properties of the atoms and cavity field in the two-atom Tavis-Cummings model
Wang Zhong-Chun (王忠纯), Wang Qi (王琪), Zhang Yong-Sheng (张永生), Guo Guang-Can (郭光灿). Chin. Phys. B, 2005, 14(1): 137-143.
No Suggested Reading articles found!