Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070208    DOI: 10.1088/1674-1056/23/7/070208
GENERAL Prev   Next  

Average vector field methods for the coupled Schrödinger–KdV equations

Zhang Hong (张弘)a, Song Song-He (宋松和)a b, Chen Xu-Dong (陈绪栋)a, Zhou Wei-En (周炜恩)a
a Department of Mathematics and System Science, College of Science, National University of Defense Technology, Changsha 410073, China;
b State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
Abstract  The energy preserving average vector field (AVF) method is applied to the coupled Schrödinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.
Keywords:  coupled Schrö      dinger-KdV equations      average vector field method      splitting method      Fourier pseudospectral method  
Received:  13 November 2013      Revised:  08 January 2014      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91130013) and the Open Foundation of State Key Laboratory of High Performance Computing of China.
Corresponding Authors:  Song Song-He     E-mail:  shsong@nudt.edu.cn
About author:  02.60.Cb; 02.70.Bf; 02.30.Jr

Cite this article: 

Zhang Hong (张弘), Song Song-He (宋松和), Chen Xu-Dong (陈绪栋), Zhou Wei-En (周炜恩) Average vector field methods for the coupled Schrödinger–KdV equations 2014 Chin. Phys. B 23 070208

[1] Kaya D 2003 Phys. Lett. A 313 82
[2] Appert K and Vaclavik J 1977 Phys. Fluids 20 1845
[3] Nishikawa K, Hojo H, Mima K and Ikeze H 1974 Phys. Rev. Lett. 33 148
[4] Mahankov V G 1978 Phys. Rep. 35 1
[5] Gibbous J 1977 J. Plasma Phys. 17 153
[6] Albert J and Pava J A 2003 Proc. R. Soc. 133 987
[7] Peng Y Z 2004 Pramana 62 933
[8] Abdou M A and Sdiman A A 2005 Physica D 211 1
[9] Labidi M, Ebadi G, Zerrad E and Biswas A 2012 Pramana 78 59
[10] Bai D and Zhang L 2009 Phys. Lett. A 373 2237
[11] Golbabai A and Safdari-Baighani A 2011 Computing 92 225
[12] Liu Y Q, Cheng R J and Ge H X 2013 Chin. Phys. B 22 100204
[13] Miyatake Y, Yaguchi T and Matsuo T 2012 J. Comput. Phys. 231 4542
[14] Furihata D 1999 J. Comput. Phys. 156 181
[15] Celledoni E, Grimm V, McLachlan R I, RcLaren D I, O'Neale D, Owren B and Quispel G R W 2012 J. Comput. Phys. 231 6770
[16] Matsuo T 2008 J. Comput. Appl. Math. 218 506
[17] Yaguchi T, Matsuo T and Sugihara M 2010 J. Comput. Appl. Math. 234 1036
[18] Olver P J 2000 Applications of Lie Groups to Differential Equations (Vol. 107) (Berlin: Springer-Verlag)
[19] Hairer E 2010 JNAIAM 5 73
[20] Chen J b, Qin M Z and Tang Y F 2002 Comput. Math. Appl. 43 1095
[21] Chen Y M, Song S H and Zhu H J 2011 J. Comput. Appl. Math. 236 1354
[22] Qian X, Song S H, Gao E and Li W B 2012 Chin. Phys. B 21 070206
[23] Weideman J A C and Herbst B M 1986 SIAM J. Numer. Anal. 23 485
[24] Feng K, Wu H M, Qin M Z and Wang D L 1989 J. Comput. Math. 7 71
[25] McLachlan R I 1994 Numer. Math. 66 462
[26] Tang Y F 1994 Comput. Math. Appl. 27 31
[27] Hu W P and Deng Z C 2008 Chin. Phys. B 17 3923
[28] Guo B and Shen L 1982 Proceedings of DD-3 Symposium, August 23-September 16, 1982 Changchun, China, p. 417
[29] Fan E G 2002 J. Phys. A: Math. Gen. 35 6853
[1] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[2] Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation
Jing-Wei Sun(孙竟巍), Xu Qian(钱旭), Hong Zhang(张弘), and Song-He Song(宋松和). Chin. Phys. B, 2021, 30(7): 070201.
[3] Conformal structure-preserving method for damped nonlinear Schrödinger equation
Hao Fu(傅浩), Wei-En Zhou(周炜恩), Xu Qian(钱旭), Song-He Song(宋松和), Li-Ying Zhang(张利英). Chin. Phys. B, 2016, 25(11): 110201.
[4] Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term
Cai Jia-Xiang (蔡加祥), Bai Chuan-Zhi (柏传志), Qin Zhi-Lin (秦志林). Chin. Phys. B, 2015, 24(10): 100203.
[5] Multi-symplectic method for the coupled Schrödinger-KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Zhou Wei-En (周炜恩), Chen Xu-Dong (陈绪栋). Chin. Phys. B, 2014, 23(8): 080204.
[6] A high order energy preserving scheme for the strongly coupled nonlinear Schrödinger system
Jiang Chao-Long (蒋朝龙), Sun Jian-Qiang (孙建强). Chin. Phys. B, 2014, 23(5): 050202.
[7] A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation
Lv Zhong-Quan (吕忠全), Zhang Lu-Ming (张鲁明), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2014, 23(12): 120203.
[8] A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system
Cai Jia-Xiang (蔡加祥), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2013, 22(6): 060207.
[9] Multisymplectic implicit and explicit methods for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Yang Bin (杨斌), Liang Hua (梁华). Chin. Phys. B, 2013, 22(3): 030209.
[10] An element-free Galerkin (EFG) method for numerical solution of the coupled Schrödinger-KdV equations
Liu Yong-Qing (刘永庆), Cheng Rong-Jun (程荣军), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2013, 22(10): 100204.
[11] Explicit multi-symplectic method for the Zakharov–Kuznetsov equation
Qian Xu(钱旭), Song Song-He(宋松和), Gao Er(高二), and Li Wei-Bin(李伟斌) . Chin. Phys. B, 2012, 21(7): 070206.
[12] Multi-symplectic wavelet splitting method for the strongly coupled Schrödinger system
Qian Xu (钱旭), Chen Ya-Ming (陈亚铭), Gao Er (高二), Song Song-He (宋松和). Chin. Phys. B, 2012, 21(12): 120202.
No Suggested Reading articles found!