Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 080204    DOI: 10.1088/1674-1056/23/8/080204
GENERAL Prev   Next  

Multi-symplectic method for the coupled Schrödinger-KdV equations

Zhang Hong (张弘)a, Song Song-He (宋松和)a b, Zhou Wei-En (周炜恩)a, Chen Xu-Dong (陈绪栋)a
a Department of Mathematics and System Science, College of Science, National University of Defense Technology, Changsha 410073, China;
b State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
Abstract  In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schrödinger-KdV equations (CSKE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospectral (MSFP) scheme for the CSKE. In numerical experiments, we compare the MSFP method with the Crank-Nicholson (CN) method. Our results show high accuracy, effectiveness, and good ability of conserving the invariants of the MSFP method.
Keywords:  coupled Schrödinger-KdV equations      multi-symplectic      Fourier pseudospectral method  
Received:  01 November 2013      Revised:  11 February 2014      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91130013) and the Open Foundation of State Key Laboratory of High Performance Computing.
Corresponding Authors:  Song Song-He     E-mail:  shsong@nudt.edu.cn

Cite this article: 

Zhang Hong (张弘), Song Song-He (宋松和), Zhou Wei-En (周炜恩), Chen Xu-Dong (陈绪栋) Multi-symplectic method for the coupled Schrödinger-KdV equations 2014 Chin. Phys. B 23 080204

[1] Guo B and Chen F 1997 Nonlinear Anal. Theory Methods Appl. 29 569
[2] Appert K and Vaclavik J 1977 Phys. Fluids 20 1845
[3] Nishikawa K, Hojo H, Mima K and Ikeze H 1974 Phys. Rev. Lett. 33 148
[4] Mahankov V G 1978 Phys. Rep. 35 1
[5] Gibbous J 1977 J. Plasma Phys. 17 153
[6] Albert J and Pava J A 2003 Proc. R. Soc. Edinburgh 133 987
[7] Peng Y Z 2004 Pramana 62 933
[8] Guo B and Shen L 1982 Proceedings of DD-3 Symposium, August 23-September 16, 1982, Changchun, China, p. 417
[9] Abdou M A and Sdiman A A 2005 Physica D 211 1
[10] Kaya D 2003 Phys. Lett. A 313 82
[11] Labidi M, Ebadi G, Zerrad E and Biswas A 2012 Pramana. 78 59
[12] Bai D and Zhang L 2009 Phys. Lett. A 373 2237
[13] Golbabai A and Safdari-Baighani A 2011 Computing 92 225
[14] Liu Y Q, Cheng R J and Ge H X 2013 Chin. Phys. B 22 100204
[15] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[16] Chen J B, Qin M Z and Tang Y F 2002 Comput. Math. Appl. 43 1095
[17] Huang L Y 2009 Chin. J. Comput. Phys. 26 693
[18] Wang Y S, Li Q H and Song Y Z 2008 Chin. Phys. Lett. 25 1538
[19] Kong L H, Hong J L, Wang L and Fu F F 2009 J. Comput. Appl. Math. 231 664
[20] Wang J 2009 J. Phys. A: Math. Theor. 42 085205
[21] Cai J X and Liang H 2012 Chin. Phys. Lett. 29 080201
[22] Chen Y M, Song S H and Zhu H J 2012 Appl. Math. Comput. 218 5552
[23] Qian X, Song S H, Gao E and Li W B 2012 Chin. Phys. B 21 070206
[24] Reich S 2000 J. Comput. Phys. 157 473
[25] Dehghan M and Shokri A 2008 Math. Comput. Simul. 79 700
[26] Fan E G 2002 J. Phys. A: Math. Gen. 35 6853
[1] Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation
Feng Guo(郭峰). Chin. Phys. B, 2019, 28(5): 050201.
[2] Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity
Jia-Xiang Cai(蔡加祥), Qi Hong(洪旗), Bin Yang(杨斌). Chin. Phys. B, 2017, 26(10): 100202.
[3] Conformal structure-preserving method for damped nonlinear Schrödinger equation
Hao Fu(傅浩), Wei-En Zhou(周炜恩), Xu Qian(钱旭), Song-He Song(宋松和), Li-Ying Zhang(张利英). Chin. Phys. B, 2016, 25(11): 110201.
[4] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[5] Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term
Cai Jia-Xiang (蔡加祥), Bai Chuan-Zhi (柏传志), Qin Zhi-Lin (秦志林). Chin. Phys. B, 2015, 24(10): 100203.
[6] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Chen Xu-Dong (陈绪栋), Zhou Wei-En (周炜恩). Chin. Phys. B, 2014, 23(7): 070208.
[7] A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation
Lv Zhong-Quan (吕忠全), Zhang Lu-Ming (张鲁明), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2014, 23(12): 120203.
[8] Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations
Huang Lang-Yang (黄浪扬), Jiao Yan-Dong (焦艳东), Liang De-Min (梁德民). Chin. Phys. B, 2013, 22(7): 070201.
[9] A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system
Cai Jia-Xiang (蔡加祥), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2013, 22(6): 060207.
[10] Multisymplectic implicit and explicit methods for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Yang Bin (杨斌), Liang Hua (梁华). Chin. Phys. B, 2013, 22(3): 030209.
[11] Explicit multi-symplectic method for the Zakharov–Kuznetsov equation
Qian Xu(钱旭), Song Song-He(宋松和), Gao Er(高二), and Li Wei-Bin(李伟斌) . Chin. Phys. B, 2012, 21(7): 070206.
[12] Multi-symplectic wavelet splitting method for the strongly coupled Schrödinger system
Qian Xu (钱旭), Chen Ya-Ming (陈亚铭), Gao Er (高二), Song Song-He (宋松和). Chin. Phys. B, 2012, 21(12): 120202.
[13] Multi-symplectic method for generalized fifth-order KdV equation
Hu Wei-Peng (胡伟鹏), Deng Zi-Chen (邓子辰). Chin. Phys. B, 2008, 17(11): 3923-3929.
No Suggested Reading articles found!