Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070206    DOI: 10.1088/1674-1056/21/7/070206
GENERAL Prev   Next  

Explicit multi-symplectic method for the Zakharov–Kuznetsov equation

Qian Xu(钱旭), Song Song-He(宋松和), Gao Er(高二), and Li Wei-Bin(李伟斌)
Department of Mathematics and Systems Science, College of Science, National University of Defense Technology, Changsha 410073, China
Abstract  We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov--Kuznetsov equation. The method is is to combine the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler method for temporal discretization. It is verified that the proposed method has corresponding discrete multi-symplectic conservation laws. Numerical simulations indicate that the proposed scheme is characterized by excellent conservation.
Keywords:  multi-symplectic method      Fourier pseudospectral method      Euler method      Zakharov--Kuznetsov equation  
Received:  30 November 2011      Revised:  05 January 2012      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Hm (Spectral methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10971226, 91130013, and 11001270) and the National Basic Research Program of China (Grant No. 2009CB723802).
Corresponding Authors:  Qian Xu     E-mail:  qian429024662@sina.com

Cite this article: 

Qian Xu(钱旭), Song Song-He(宋松和), Gao Er(高二), and Li Wei-Bin(李伟斌) Explicit multi-symplectic method for the Zakharov–Kuznetsov equation 2012 Chin. Phys. B 21 070206

[1] Zakharov V E and Kuznetsov E A 1974 Sov. Phys. JEPT 285 1661
[2] Toh S, Iwasaki H and Kawahara T 1989 Phys. Rev. A 40 5472
[3] Petviashvihi V I 1980 JETP Lett. 32 619
[4] Nozaki K 1981 Phys. Rev. Lett. 46 184
[5] Iwasaki H, Toh S and Kawahara T 1990 Physica D 43 293
[6] Taogetusang and Sirendaoreji 2006 Chin. Phys. 15 1143
[7] Dong Z, Chen Y and Lang Y 2010 Chin. Phys. B 19 090205
[8] Xu Y and Shu C W 2005 Physica D 208 2005
[9] Bridges T J and Reich S 2006 J. Phys. A 39 5287
[10] Hu W and Deng Z 2008 Chin. Phys. B 17 3923
[11] Zhu H, Song S and Tang Y 2011 Comput. Phys. Commun. 182 616
[12] Chen Y, Zhu H and Song S 2011 Commun. Theor. Phys. 56 617
[13] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[14] Reich S 2000 J. Comput. Phys. 157 473
[15] Bridges T J and Reich S 2001Physica D 152 491
[16] Chen J and Qin M 2001 Electron. Trans. Numer. Anal. 12 193
[17] Moore B and Reich S 2003 Numer. Math. 95 625
[18] Chen Y, Song S and Zhu H 2011 J. Comput. Appl. Math. 236 1354
[1] Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation
Feng Guo(郭峰). Chin. Phys. B, 2019, 28(5): 050201.
[2] Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term
Cai Jia-Xiang (蔡加祥), Bai Chuan-Zhi (柏传志), Qin Zhi-Lin (秦志林). Chin. Phys. B, 2015, 24(10): 100203.
[3] Multi-symplectic method for the coupled Schrödinger-KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Zhou Wei-En (周炜恩), Chen Xu-Dong (陈绪栋). Chin. Phys. B, 2014, 23(8): 080204.
[4] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Chen Xu-Dong (陈绪栋), Zhou Wei-En (周炜恩). Chin. Phys. B, 2014, 23(7): 070208.
[5] A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation
Lv Zhong-Quan (吕忠全), Zhang Lu-Ming (张鲁明), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2014, 23(12): 120203.
[6] A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system
Cai Jia-Xiang (蔡加祥), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2013, 22(6): 060207.
[7] Multisymplectic implicit and explicit methods for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Yang Bin (杨斌), Liang Hua (梁华). Chin. Phys. B, 2013, 22(3): 030209.
[8] Multi-symplectic wavelet splitting method for the strongly coupled Schrödinger system
Qian Xu (钱旭), Chen Ya-Ming (陈亚铭), Gao Er (高二), Song Song-He (宋松和). Chin. Phys. B, 2012, 21(12): 120202.
[9] Construction of doubly-periodic solutions to nonlinear partial differential equations using improved Jacobi elliptic function expansion method and symbolic computation
Zhao Xue-Qin(赵雪芹), Zhi Hong-Yan(智红燕), and Zhang Hong-Qing(张鸿庆). Chin. Phys. B, 2006, 15(10): 2202-2209.
No Suggested Reading articles found!