Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100204    DOI: 10.1088/1674-1056/22/10/100204
GENERAL Prev   Next  

An element-free Galerkin (EFG) method for numerical solution of the coupled Schrödinger-KdV equations

Liu Yong-Qing (刘永庆)a, Cheng Rong-Jun (程荣军)b, Ge Hong-Xia (葛红霞)c
a Faculty of Science, Ningbo University, Ningbo 315211, China;
b Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
c Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
Abstract  The present paper deals with the numerical solution of the coupled Schrödinger-KdV equations using the element-free Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditional mesh oriented methods such as the finite difference method (FDM) and the finite element method (FEM), this method needs only scattered nodes in the domain. For this scheme, a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method. In numerical experiments, the results are presented and compared with the findings of the finite element method, the radial basis functions method, and an analytical solution to confirm the good accuracy of the presented scheme.
Keywords:  element-free Galerkin (EFG) method      meshless method      the coupled Schrö      dinger-KdV equations  
Received:  19 October 2012      Revised:  07 April 2013      Accepted manuscript online: 
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072117 and 61074142), the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110007), Scientific Research Fund of Zhejiang Provincial Education Department, China (Grant No. Z201119278), the Natural Science Foundation of Ningbo City (Grant Nos. 2012A610152 and 2012A610038), the Disciplinary Project of Ningbo City, China (Grant No. SZXL1067), and K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Ge Hong-Xia     E-mail:  gehongxia@nbu.edu.cn

Cite this article: 

Liu Yong-Qing (刘永庆), Cheng Rong-Jun (程荣军), Ge Hong-Xia (葛红霞) An element-free Galerkin (EFG) method for numerical solution of the coupled Schrödinger-KdV equations 2013 Chin. Phys. B 22 100204

[1] Appert K and Vaclavik J 1977 Phys. Fluids 20 1845
[2] Nishikawa K, Hojo H, Mima K and lkezi H 1974 Phys. Rev. Lett. 33 148
[3] Wang H 2005 Appl. Math. Comput. 170 17
[4] Makhankov V G 1974 Phys. Lett. A 50 42
[5] Bao W Z and Jaksch D 2003 SIAM. J. Numer. Anal. 41 1406
[6] Kucakarslan S 2009 Nonlinear Anal. Real Word Appl. 10 2264
[7] Bai D and Zhang L 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1263
[8] Pereira N R, Sudan R N and Denavit J 1977 Phys. Fluids 20 271
[9] Abdou M A and Sdiman A A 2005 Physica D 211 1
[10] Kaya D 2003 Phys. Lett. A 313 82
[11] Bai D and zhang L 2009 Phys. Lett. A 373 2237
[12] Golbabai A and Safdari-Vaighani A 2011 Computing 92 225
[13] Wang J F, Sun F X and Cheng R J 2010 Chin. Phys. B 19 060201
[14] Cheng R J and Ge H X 2009 Chin. Phys. B 18 4059
[15] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070206
[16] Du C 2000 Comput. Meth. Appl. Mesh. Engng. 182 89
[17] Kryl P and Belytschko T 1995 Comput. Mech. 17 26
[18] Belytschko T, Krongauz Y, Organ D, et al. 1996 Comput. Meth. Appl. Mech. Engn. 139 3
[19] Rubin S G and Graves R A 1975 Nasa TR R-436, Washington DC
[20] Guo B and Shen L 1982 Proceedings of DD-3 Symposium, Changchun, China, p. 417
[21] Fan E G 2002 J. Phys. A: Math. Gen. 35 6853
[1] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[2] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[3] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[4] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[5] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[6] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi (马永其), Zhou Yan-Kai (周延凯). Chin. Phys. B, 2015, 24(3): 030204.
[7] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min (程玉民), Liu Chao (刘超), Bai Fu-Nong (白福浓), Peng Miao-Juan (彭妙娟). Chin. Phys. B, 2015, 24(10): 100202.
[8] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai (周延凯), Ma Yong-Qi (马永其), Dong Yi (董轶), Feng Wei (冯伟). Chin. Phys. B, 2015, 24(1): 010204.
[9] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(9): 090202.
[10] Multi-symplectic method for the coupled Schrödinger-KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Zhou Wei-En (周炜恩), Chen Xu-Dong (陈绪栋). Chin. Phys. B, 2014, 23(8): 080204.
[11] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Chen Xu-Dong (陈绪栋), Zhou Wei-En (周炜恩). Chin. Phys. B, 2014, 23(7): 070208.
[12] A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation
Ge Hong-Xia (葛红霞), Cheng Rong-Jun (程荣军). Chin. Phys. B, 2014, 23(4): 040203.
[13] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie (翁云杰), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(9): 090204.
[14] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang (王启防), Dai Bao-Dong (戴保东), Li Zhen-Feng (栗振锋). Chin. Phys. B, 2013, 22(8): 080203.
[15] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin (李小林), Li Shu-Ling (李淑玲). Chin. Phys. B, 2013, 22(8): 080204.
No Suggested Reading articles found!