Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070207    DOI: 10.1088/1674-1056/23/7/070207
GENERAL Prev   Next  

An interpolating reproducing kernel particle method for two-dimensional scatter points

Qin Yi-Xiao (秦义校)a, Liu Ying-Ying (刘营营)a, Li Zhong-Hua (李中华)a b, Yang Ming (杨明)a
a College of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
b Shantui Construction Machinery Co., Ltd, Jining 272000, China
Abstract  An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It eliminates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating reproducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method.
Keywords:  interpolating reproducing kernel particle method      point interpolating characteristic      scatter points  
Received:  26 November 2013      Revised:  22 January 2014      Accepted manuscript online: 
PACS:  02.60.-x (Numerical approximation and analysis)  
  02.60.Cb (Numerical simulation; solution of equations)  
  46.25.-y (Static elasticity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11171208) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013011022-6).
Corresponding Authors:  Qin Yi-Xiao     E-mail:  qyx819@163.com,457612677@qq.com
About author:  02.60.-x; 02.60.Cb; 46.25.-y

Cite this article: 

Qin Yi-Xiao (秦义校), Liu Ying-Ying (刘营营), Li Zhong-Hua (李中华), Yang Ming (杨明) An interpolating reproducing kernel particle method for two-dimensional scatter points 2014 Chin. Phys. B 23 070207

[1] Belytschko T, Lu Y Y and Gu L 1994 Int. J. Numer. Meth. Eng. 37 229
[2] Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese)
[3] Ren H P and Cheng Y M 2011 Int. J.Appl. Mech. 3 735
[4] Aluru N R 2000 Int. J. Number. Meth. Eng. 47 1083
[5] Cheng Y M and Li J H 2006 Sci. China Ser. G: Phys. Mech. Astron. 49 46
[6] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)
[7] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese)
[8] Chen L and Cheng Y M 2010 Sci. Sin. Phys. Mech. Astron. 40 242 (in Chinese)
[9] Chen L and Cheng Y M 2010 Sci. China Phys. Mech. Astron. 53 954
[10] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090204
[11] Cheng Y M and Li J H 2005 Acta Phys. Sin. 45 548 (in Chinese)
[12] Cheng Y M, Li R X and Peng M J 2012 Chin. Phys. B 21 090205
[13] Wang J F and Cheng Y M 2013 Chin. Phys. B 22 030208
[14] Cheng Y M and Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese)
[15] Peng M J and Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77
[16] Ren H P, Cheng Y M and Zhang W 2009 Chin. Phys. B 18 4065
[17] Ren H P, Cheng Y M and Zhang W 2010 Sci. China Ser. G: Phys. Mech. Astron. 53 758
[18] Qin Y X and Cheng Y M 2009 Chinese Journal of Theoretical and Applied Mechanics 41 898 (in Chinese)
[19] Cheng Y M, Liew K M and Kitipornchai S 2009 Int. J. Numer. Meth. Eng. 78 1258
[20] Liu W K, Chen Y and Uras R A 1996 Comput. Meth. Appl. Mech. Eng. 139 91
[21] Li S and Liu W K 1997 Comput. Meth. Appl. Mech. Eng. 143 113
[22] Chen J S, Yoon S, Wang H P and Liu W K 2000 Comput. Meth. Appl. Mech. Eng. 181 117
[23] Cheng Y M and Peng M J 2005 Sci. China Ser. G: Phys. Mech. Astron. 48 641
[24] Cheng Y M, Wang J F and Bai F N 2012 Chin. Phys. B 21 090203
[25] Wang J F and Cheng Y M 2012 Chin. Phys. B 21 090203
[26] Cheng Y M, Wang J F and Li R X 2012 Int. J. Appl. Mech. 4 1250042
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[3] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[4] Gauss quadrature based finite temperature Lanczos method
Jian Li(李健) and Hai-Qing Lin(林海青). Chin. Phys. B, 2022, 31(5): 050203.
[5] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
[6] Effect of symmetrical frequency chirp on pair production
Kun Wang(王焜), Xuehua Hu(胡学华), Sayipjamal Dulat, and Bai-Song Xie(谢柏松). Chin. Phys. B, 2021, 30(6): 060204.
[7] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[8] Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative
Jiahui Hu(胡嘉卉), Jungang Wang(王俊刚), Yufeng Nie(聂玉峰), Yanwei Luo(罗艳伟). Chin. Phys. B, 2019, 28(10): 100201.
[9] Effects of imperfect pulses on dynamical decoupling using quantum trajectory method
Lin-Ze He(何林泽), Man-Chao Zhang(张满超), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(12): 120303.
[10] Heteroclinic cycles in a new class of four-dimensional discontinuous piecewise affine systems
Wenjing Xu(徐文静), Wei Xu(徐伟), Li Cai(蔡力). Chin. Phys. B, 2018, 27(11): 110201.
[11] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[12] Effects of rainy weather on traffic accidents of a freeway using cellular automata model
Ming-Bao Pang(庞明宝), Bo-Ning Ren(任泊宁). Chin. Phys. B, 2017, 26(10): 108901.
[13] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[14] Conformal structure-preserving method for damped nonlinear Schrödinger equation
Hao Fu(傅浩), Wei-En Zhou(周炜恩), Xu Qian(钱旭), Song-He Song(宋松和), Li-Ying Zhang(张利英). Chin. Phys. B, 2016, 25(11): 110201.
[15] Statistical second-order two-scale analysis and computation for heat conduction problem with radiation boundary condition in porous materials
Zhi-Qiang Yang(杨志强), Shi-Wei Liu(刘世伟), Yi Sun(孙毅). Chin. Phys. B, 2016, 25(9): 090202.
No Suggested Reading articles found!