Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064701    DOI: 10.1088/1674-1056/23/6/064701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Slip effects on streamline topologies and their bifurcations for peristaltic flows of a viscous fluid

Z. Asghar, N. Ali
Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan
Abstract  We discuss the effects of the surface slip on streamline patterns and their bifurcations for the peristaltic transport of a Newtonian fluid. The flow is in a two-dimensional symmetric channel or an axisymmetric tube. An exact expression for the stream function is obtained in the wave frame under the assumptions of long wavelength and low Reynolds number for both cases. For the discussion of the particle path in the wave frame, a system of nonlinear autonomous differential equations is established and the methods of dynamical systems are used to discuss the local bifurcations and their topological changes. Moreover, all types of bifurcations and their topological changes are discussed graphically. Finally, the global bifurcation diagram is used to summarize the bifurcations.
Keywords:  viscous fluid      slip condition      streamline topologies      bifurcation  
Received:  05 September 2013      Revised:  30 October 2013      Accepted manuscript online: 
PACS:  47.15.-x (Laminar flows)  
  47.10.ad (Navier-Stokes equations)  
  47.15.G-  
  05.45.-a (Nonlinear dynamics and chaos)  
Corresponding Authors:  Z. Asghar     E-mail:  zaheer_asghar@yahoo.com

Cite this article: 

Z. Asghar, N. Ali Slip effects on streamline topologies and their bifurcations for peristaltic flows of a viscous fluid 2014 Chin. Phys. B 23 064701

[1] Shapiro A H 1967 National Academy of Science Natural Research Council 1 109
[2] Shapiro A H and Latham T W 1966 Proc. Ann. Conf. Engng. Med. Bio., San Francisco, California 8 147
[3] Weinberg S L 1970 Ph. D. Thesis, MIT, Cambridge MA, USA
[4] Shapiro A H, Jaffrin M Y and Weinberg S L 1969 J. Fluid Mech. 37 799
[5] Ebaid A 2008 Phys. Lett. A 372 4493
[6] Elshahed M and Haroun M H 2005 Math. Probs. Engng. 6 663
[7] Hayat T, Ali N and Asghar S 2007 Phys. Lett. A 363 397
[8] Hayat T, Ahmed N and Ali N 2008 Commun. Nonlinear Sci. Numer. Simul. 13 1581
[9] Hayat T, Javed M and Ali N 2008 Transp. Porous Med. 74 259
[10] Hayat T, Qureshi M U and Ali N 2009 Appl. Math. Model. 33 1862
[11] Hayat T, Noreen S, Asghar S and Hendi A A 2011 Chem. Engng. Commun. 198 609
[12] Hayat T and Noreen S 2012 Chem. Engng. Commun. 199 512
[13] Mekheimer Kh S 2008 Phys. Lett. A 372 4271
[14] Mekheimer Kh S and Elmaboud Y A 2008 Phys. Lett. A 372 1657
[15] Nadeem S and Akram S 2010 Commun. Nonlinear Sci. Numer. Simul. 15 312
[16] Vajravelu K, Sreenadh S and Babu V R 2005 Appl. Math. Comput. 169 726
[17] Vajravelu K, Radhakrishnamacharya G and Radhakrishnamurty V 2007 Non-Linear Mech. 42 754
[18] Srinivas S and Muthuraj R 2010 Chem. Engng. Commun. 197 1387
[19] Abd-Alla A M, Abo-Dahab S M and Al-Shahrany 2013 Chin. Phys. B 22 074702
[20] Akbar N S and Nadeem S 2013 Chin. Phys. B 22 014703
[21] Ali N, Sajid M and Javed T 2011 Chin. Phys. Lett. 28 014704
[22] Mehmood O U, Mustapha N and Shafie S 2012 Appl. Math. Mech.: Engl. Ed. 33 1313
[23] Oswatitsch K 1958 IUTAM Symposium on Boundary Layer Research (Berlin: Springer-Verlag) p. 357
[24] Davey A 1961 J. Fluid Mech. 10 593
[25] Lighthill M J 1963 Laminar Boundary Layers 2 72
[26] Hunt J C R, Abell C J, Peterka J A and Woo H 1978 J. Fluid Mech. 86 179
[27] Tobak M and Peake D J 1982 Ann. Rev. Fluid Mech. 14 61
[28] Perry A E and Chong M S 1987 Ann. Rev. Fluid Mech. 19 125
[29] Brons M and Hartnack J N 1999 Phys. Fluids 11 314
[30] Gurcan F, Deliceoglu A and Bakker P G 2005 J. Fluid Mech. 539 299
[31] Jimenez J and Sen M 2010 Chem. Engng. Process. 49 704
[32] Bakker P G 1991 Bifurcations in Flow Patterns (Dordrecht: Kluwer Academic Publishers)
[33] Seydel R 1988 From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis (New York: Elsevier)
[34] Perko L 2000 Differential Equations and Dynamical Systems, 3rd edn. (Los Alamitos: Springer-Verlag)
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[4] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[5] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[6] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[9] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[10] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[11] Enhance sensitivity to illumination and synchronization in light-dependent neurons
Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军). Chin. Phys. B, 2021, 30(12): 120510.
[12] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[13] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
[14] Control of firing activities in thermosensitive neuron by activating excitatory autapse
Ying Xu(徐莹) and Jun Ma(马军). Chin. Phys. B, 2021, 30(10): 100501.
[15] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
No Suggested Reading articles found!