Abstract We discuss the effects of the surface slip on streamline patterns and their bifurcations for the peristaltic transport of a Newtonian fluid. The flow is in a two-dimensional symmetric channel or an axisymmetric tube. An exact expression for the stream function is obtained in the wave frame under the assumptions of long wavelength and low Reynolds number for both cases. For the discussion of the particle path in the wave frame, a system of nonlinear autonomous differential equations is established and the methods of dynamical systems are used to discuss the local bifurcations and their topological changes. Moreover, all types of bifurcations and their topological changes are discussed graphically. Finally, the global bifurcation diagram is used to summarize the bifurcations.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.