Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 014601    DOI: 10.1088/1674-1056/22/1/014601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Screw dislocations interacting with two asymmetrical interfacial cracks emanating from an elliptical hole

Zeng Xin (曾鑫)a b, Fang Qi-Hong (方棋洪)a b, Liu You-Wen (刘又文)a b, P. H. Wenc
a State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body , Hunan University, Changsha 410082, China;
b College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
c School of Engineering and Material Sciences, Queen Mary, University of London, London, E14NS, UK
Abstract  The interaction between screw dislocations and two asymmetrical interfacial cracks emanating from an elliptic hole under loads at infinity is studied. The closed-form solution is derived for complex potentials. The stress intensity factor and the critical applied stress for dislocation emission are also calculated. In the limiting cases, the well-known results can be obtained from the present solutions. Moreover, new exact solutions for a screw dislocation interacting with some complicated cracks are derived. The results show that the shielding effect increases with the increase of the lengths of the other crack and the minor semi axis, but decreases with the increase of dislocation azimuth. The repulsion acting on the dislocation from the other phase and the other crack extend in the horizontal direction make the dislocation emission at the crack tip take place more easily, but the minor semi axis of the elliptical hole extend in the vertical direction makes it take place more difficultly.
Keywords:  interfacial crack      elliptic hole      shielding effect      dislocation emission  
Received:  30 May 2012      Revised:  12 July 2012      Accepted manuscript online: 
PACS:  46.05.+b (General theory of continuum mechanics of solids)  
  46.25.Cc (Theoretical studies)  
  46.50.+a (Fracture mechanics, fatigue and cracks)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172094 and 11172095), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0122), the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, China (Grant Nos. 61075005 and 51075001), and the Fundamental Research Funds for the Central Universities (Hunan University), China.
Corresponding Authors:  Liu You-Wen     E-mail:  liuyouw8294@sina.com

Cite this article: 

Zeng Xin (曾鑫), Fang Qi-Hong (方棋洪), Liu You-Wen (刘又文), P. H. Wen Screw dislocations interacting with two asymmetrical interfacial cracks emanating from an elliptical hole 2013 Chin. Phys. B 22 014601

[1] Lung C W and Wang L 1984 Philos. Mag. 50 19
[2] Lee S 1987 Eng. Fract. Mech. 27 539
[3] Shiue S T and Lee S 1992 J. Appl. Phys. 71 1196
[4] Zhang T Y and Li J C M 1991 Mat. Sci. Eng. A 142 35
[5] Zhang T Y and Qian C F 1996 Acta Mater. 44 4513
[6] Qian C F, Li K, Chen H and Li J C M 1996 Mech. Mater. 24 221
[7] Lin K M, Lin H C, Chen K C and Chang H L 1997 Mat. Sci. Eng. A 224 216
[8] Wang S D and Lee S 1998 Mat. Sci. Eng. A 246 61
[9] Xie H X, Wang C Y, Yu T and Du J P 2009 Chin. Phys. B 18 0251
[10] Song H P, Fang Q H and Liu Y W 2009 Eng. Fract. Mech. 76 1603
[11] Song H P, Fang Q H and Liu Y W 2010 Chin. Phys. B 19 056102
[12] Fang Q H, Song H P and Liu Y W 2010 Chin. Phys. B 19 016102
[13] Lin K M and Chang H L 1994 Mat. Sci. Eng. A 187 139
[14] Xie C and Liu Y W 2008 Theor. Appl. Fract. Mec. 50 214
[15] Xie C, Liu Y W, Fang Q H and Deng M 2009 Theor. Appl. Fract. Mec. 51 139
[16] Zhou K and Wu M S 2010 Int. J. Eng. Sci. 48 237
[17] Rice J R and Thomson R 1974 Philos. Mag. 29 73
[18] Wang T C 1995 Int. J. Fract. 69 295
[19] Chen B T and Lee S 2000 Int. J. Fract. 102 287
[20] Huang M and Li Z 2004 J. Mech. Phys. Solids 52 1991
[21] Fang Q H, Liu Y, Liu Y W and Huang B Y 2009 Physica B: Condensed Matter 404 3421
[22] Head A K 1953 Philos. Mag. 44 92
[23] Pacheco E S and Mura T 1969 J. Mech. Phys. Solids 17 163
[24] Chu S N G 1982 J. Appl. Phys. 53 3019
[25] Shiue S T, Hu C T and Lee S 1989 Eng. Fract. Mech. 33 697
[26] Lee S L and Huang W S 1991 Mat. Sci. Eng. A 142 41
[27] Lee S 1994 Mat. Sci. Eng. A 176 335
[28] Ouyang H and Lee S 1996 Eng. Fract. Mech. 54 629
[29] Zhang T Y and Qian C F 1996 Mech. Mater. 24 159
[30] Wu X F, Cohnb S and Dzenisa Y A 2003 Int. J. Eng. Sci. 41 667
[31] Li B, Liu Y W and Fang Q H 2007 Int. J. Solids Struct. 44 4206
[32] Liu Y W, Xie C, Deng M, Fang Q H and Jin B 2009 Theor. Appl. Fract. Mec. 52 146
[33] Bowie O L 1956 J. Math. Phy. 35 60
[34] Newman J C 1971 NASA TN D-6376
[35] Tweed J and Rooke D P 1973 Int. J. Eng. Sci. 11 1185
[36] Murakami Y 1978 Trans. Japan Soc. Mech. Engrs. 44 423
[37] Isida M and Nakamura Y 1980 Trans. Japan Soc. Mech. Engrs. 46 947
[38] Yan X Q 2006 Eur. J. Mech. A 25 142
[39] Sih G C 1965 J. Appl. Mech. (Trans. ASME) 32 51
[40] Yokobori T, Ichikawa M, Konosu S and Takahashi R 1971 Jpn. Soc. Strength Fract. Mater. 6 58
[41] Shiue S T and Lee S 1988 J. Appl. Phys. 64 129
[42] Lam K Y, Tay T E and Wang W 1996 Eng. Fract. Mech. 53 97
[43] Guo J H and Liu G T 2008 Chin. Phys. B 17 2610
[44] Guo J H, Lu Z X, Han H T and Yang Z 2009 Int. J. Solids Struct. 46 3799
[45] Guo J H, Lu Z X, Han H T and Yang Z 2010 Eur. J. Mech. A 29 654
[46] Rogowski B 2011 Arch. Appl. Mech. 81 1
[47] Muskhelishvili N L 1975 Some Basic Problems of Mathematical Theory of Elasticity (Noordhoff: Leyden)
[48] Song H P, Fang Q H and Liu Y W 2010 Commun. Theor. Phys. 53 773
[49] Song H P, Fang Q H and Liu Y W 2009 Chin. Phys. B 18 1564
[50] Li T L, Li Z H and Sun J 2006 Scr. Mater 55 703
[51] Pak Y E 1990 J. Appl. Mech. (Trans. ASME) 57 863
[1] A transparent electromagnetic-shielding film based on one-dimensional metal-dielectric periodic structures
Ya-li Zhao(赵亚丽), Fu-hua Ma(马富花), Xu-feng Li(李旭峰), Jiang-jiang Ma(马江将), Kun Jia(贾琨), Xue-hong Wei(魏学红). Chin. Phys. B, 2018, 27(2): 027302.
[2] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[3] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[4] Generalized 2D problem of icosahedral quasicrystals containing an elliptic hole
Li Lian-He (李联和). Chin. Phys. B, 2013, 22(11): 116101.
[5] Shielding effect of a nano-circular inclusion acting on semi-infinite wedge cracks
Song Hao-Peng (宋豪鹏), Gao Cun-Fa (高存法). Chin. Phys. B, 2013, 22(1): 016201.
[6] Elliptic hole in octagonal quasicrystals
Li Lian-He (李联和). Chin. Phys. B, 2013, 22(1): 016102.
[7] Elastic behaviour of a wedge disclination dipole near a sharp crack emanating from a semi-elliptical blunt crack
Song Hao-Peng(宋豪鹏), Fang Qi-Hong(方棋洪), and Liu You-Wen (刘又文). Chin. Phys. B, 2010, 19(5): 056102.
[8] Elastic behaviour of an edge dislocation near a sharp crack emanating from a semi-elliptical blunt crack
Fang Qi-Hong(方棋洪), Song Hao-Peng(宋豪鹏), and Liu You-Wen(刘又文). Chin. Phys. B, 2010, 19(1): 016102.
[9] Shielding effect and emission criterion of a screw dislocation near an interfacial blunt crack
Song Hao-Peng(宋豪鹏), Fang Qi-Hong(方棋洪), and Liu You-Wen(刘又文). Chin. Phys. B, 2009, 18(4): 1564-1569.
[10] Exact analytic solutions for an elliptic hole with asymmetric collinear cracks in a one-dimensional hexagonal quasi-crystal
Guo Jun-Hong(郭俊宏) and Liu Guan-Ting(刘官厅). Chin. Phys. B, 2008, 17(7): 2610-2620.
[11] Additivity rule for electron--molecule total cross section calculations at 50--5000eV: a new geometrical approach
Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), Zhu Zun-Lüe(朱遵略), and Liu Yu-Fang(刘玉芳) . Chin. Phys. B, 2008, 17(6): 2103-2109.
No Suggested Reading articles found!