INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Magnetizations and magneto-transport properties of Ni-doped PrFeO3 thin films |
Feroz A. Mira, S. K. Sharmab, Ravi Kumarc |
a University Science Instrumentation Center, University of Kashmir, J & K, Srinagar-190006, India; b Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Campinas, 13.083-970 Sao Paulo, Brazil; c CMSE, National Institute of Technology, Hamirpur (H.P)-177005, India |
|
|
Abstract The present study reports the magnetizations and magneto-transport properties of PrFe1-xNixO3 thin films grown by pulsed laser ablation technique on LaAlO3 substrates. From DC M/H plots of these films, weak ferromagnetism or ferrimagnetism behaviors are observed. With Ni substitution, reduction in saturation magnetization is also seen. With Ni doping, variations in saturation field (Hs), coercive field (Hc), Weiss temperature (θ), and effective magnetic moment (peff) are seen. A small change of magnetoresitance with application of higher field is observed. Various essential parameters like density of state (Nf) at Fermi level, Mott's characteristic temperature (T0), and activation energy (Ea) in the presence of and in the absence of magnetic field are calculated. The present observed magnetic properties are related to the change of Fe-O bond length (causing an overlap between the oxygen p orbital and iron d orbital) and the deviation of the Fe-O-Fe angle from 180°. Reduction of magnetic domain after Ni doping is also explored to explain the present observed magnetic behavior of the system. The influence of doping on various transport properties in these thin films indicates a distortion in the lattice structure and single particle band width, owing to stress-induced reduction in unit cell volume.
|
Received: 11 May 2013
Revised: 10 August 2013
Accepted manuscript online:
|
PACS:
|
81.15.Fg
|
(Pulsed laser ablation deposition)
|
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
75.50.Bb
|
(Fe and its alloys)
|
|
81.15.Fg
|
(Pulsed laser ablation deposition)
|
|
Corresponding Authors:
Feroz A. Mir
E-mail: famirnit@gmail.com
|
About author: 81.15.Fg; 73.50.Jt; 75.50.Bb; 81.15.Fg |
Cite this article:
Feroz A. Mir, S. K. Sharma, Ravi Kumar Magnetizations and magneto-transport properties of Ni-doped PrFeO3 thin films 2014 Chin. Phys. B 23 048101
|
[1] |
Rao C N R and Raveau B 1998 Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides, 2nd edn. (New York: Wiley-VCH).
|
[2] |
Cornell R M and Schwertmann U 2003 The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses, 2nd edn. (Weinheim: Wiley-VCH)
|
[3] |
Wang X, Yang G Z and Lu H B 2008 Chin. Phys. Lett. 25 663
|
[4] |
Chen Z H, Sun W G and Wu W D 2008 Chin. Phys. Lett. 25 1465
|
[5] |
Wang W T, Yang G and Duan P 2002 Chin. Phys. Lett. 19 1122
|
[6] |
Wang L W, Gao J X and Huang B P 1998 Chin. Phys. Lett. 15 764
|
[7] |
Yang G Z, Lü H B, Wang H S, Cui D F, Yang H Q, Wang H, Zhou Y L and Chen Z H 1997 Chin. Phys. Lett. 14 478
|
[8] |
Ueda K, Tabata H and Kawai T 1999 Jpn. J. Appl. Phys. 38 6690
|
[9] |
Burns R G 1981 Perovskite: A Structure of Great Interest to Geophysics and Materials Science, ed. Navrotsky A and Weidner D J (Washington: Am. Geophys. Union) p. 81
|
[10] |
Park J H, Kimura T and Tokura Y 1998 Phys. Rev. B 58 13330
|
[11] |
Wu Z Y, Benfatto M, Pedio M, Cimino R, Mobilio S, Barman S R, Maiti K and Sarma D D 1997 Phys. Rev. B 56 2228
|
[12] |
Eibschutz M, Shtrikman S and Treves D 1967 Phys. Rev. 156 562
|
[13] |
Treves D 1965 J. Appl. Phys. 36 1033
|
[14] |
Dai H, He H, Li P, Gao L and Au C 2004 Catal. Today 90 231
|
[15] |
Marezio M and Dernier P D 1971 Mater. Res. Bull. 6 230
|
[16] |
Kumar R, Choudhary R J, Ikram M, Shukla D K, Mollah S, Thakur P, Chae K H, Angadi B and Choi W K 2007 J. Appl. Phys. 102 033703
|
[17] |
Choudhary R J, Kumar R, Srivastava J P, Patil S I, Arora S K and Shvets I V 2005 Appl. Phys. Lett. 87 132104
|
[18] |
Khan M W, Khan M A M, Alhoshan M, AlSalhi M S, Aldwayyan A S, Kumar R and Shahid H 2010 J. Appl. Phys. 107 093704
|
[19] |
Choudhary R J, Kumar R, Khan M W, Srivastava J P, Patil S I, Arora S K and Shvets I V 2008 Nucl. Instrm. Methods Phys. Res. B 266 1611
|
[20] |
Feroz Ahmad, Mir M Ikram and Ravi kumar 2012 Phil. Mag. 92 1058
|
[21] |
Goodenough J B 1996 J. Solid State Chem. 127 126
|
[22] |
Bombik A, Leśniewska B and Pacyna A W 2002 J. Magn. Magn. Mater. 241 25
|
[23] |
Bombik A, Pacyna A W and Witek W 1994 Acta Phys. Pol. A 85 263
|
[24] |
Demazeau G, Marbeuf A, Pouchard M and Hagenmuller P 1971 J. Solid State Chem. 3 582
|
[25] |
Wang X Y, Cao S X, Wang Y B, Yuan S J, Kang B J, Wu A H and Zhang J C 2013 J. Crystal Growth 362 216
|
[26] |
Andrzej, Barbara, Jacek M and Andrzej P 2003 J. Magn. Magn. Mater. 257 206
|
[27] |
Nagata Y 2001 J. Magn. Magn. Mater. 237 250
|
[28] |
Ogale S B, Choudhary R J, Buban J P, Lofland S E, Shinde S R, Kale S N, Kulkarni V N, Higgins J, Lanci C, Simpson J R, Browning N D, Das Sarma S, Drew H D, Greene R L and Venkatesan T 2003 Phys. Rev. Lett. 91 077205
|
[29] |
Slawaka-Waniewska A, Didukh P, Greneche J M and Fannin P C 2000 J. Magn. Magn. Mater. 227 215
|
[30] |
Haneda K and Morrish A H 1988 J. Appl. Phys. 63 4258
|
[31] |
Morrish A H and Haneda K 1981 J. Appl. Phys. 52 2496
|
[32] |
Cullity B D 2009 Introduction to Magnetic Materials (New Jersey: Wiley)
|
[33] |
Zysler R, Fiorani D, Dormann J L and Testa A M 1994 J. Magn. Magn. Mater. 133 71
|
[34] |
Richardson J T, Yiagas D I, Turk B, Forster K and Twigg M V 1991 J. Appl. Phys. 70 6977
|
[35] |
Kodama R H, Berkowitz A E, McNiff E J and Foner S 1996 Phys. Rev. Lett. 77 394
|
[36] |
Jiles D C 1997 Introduction to Magnetism and Magnetic Materials, 2nd edn. (London: Taylor and Francis)
|
[37] |
Mott N F 1968 J. Non-Cryst. Solids 1 1
|
[38] |
Austin I G and Mott N F 1969 Adv. Phys. 18 41
|
[39] |
Mott N F and Davis E A 1979 Electronic Processes in Non-Crystalline Materials, 2nd edn. (Oxford: Clarendon)
|
[40] |
Sonia B A, Nabil K, Sami K, Thierry G, Octavio P and Mohamed O 2013 J. Supercond. Nov. Magn. 26 3171
|
[41] |
Blasco J and Garc?a J 1994 Solid State Commun. 91 381
|
[42] |
Raychaudhuri A K 1995 Adv. Phys. 44 21
|
[43] |
Blasco J and Garcıa J 1994 J. Phys.: Condens. Matter 6 5875
|
[44] |
Zhang L, Huang B, Liu Y, Zhang L, Zhang R and Mei L 2003 J. Magn. Magn. Mater. 261 257
|
[45] |
Sawicki M, Dietl T, Kossut J, Igalson J, Wojtowicz T and Plesiewicz W 1986 Phys. Rev. Lett. 56 508
|
[46] |
Wang J, Gu Z, Lu M, Wu D, Yuan C, Zhang S, Chen Y, Zhu S and Zhu Y 2006 Appl. Phys. Lett. 88 252110
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|