Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044401    DOI: 10.1088/1674-1056/23/4/044401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A thermo-fluid analysis in magnetic hyperthermia

Iordana Astefanoaeia, Ioan Dumitrua, Alexandru Stancua, Horia Chiriacb
a Faculty of Physics, Alexandru Ioan Cuza University, Iasi, Romania;
b National Institute of Research & Development for Technical Physics, Iaşi, Romania
Abstract  In the last years, hyperthermia induced by the heating of magnetic nanoparticles (MNPs) in an alternating magnetic field received considerable attention in cancer therapy. The thermal effects could be automatically controlled by using MNPs with selective magnetic absorption properties. In this paper, we analyze the temperature field determined by the heating of MNPs, injected in a malignant tissue, subjected to an alternating magnetic field. The main parameters which have a strong influence on temperature field are analyzed. The temperature evolution within healthy and tumor tissues are analyzed by finite element method (FEM) simulations in a thermo-fluid model. The cooling effect produced by blood flow in blood vessels from the tumor is considered. A thermal analysis is conducted under different distributions of MNP injection sites. The interdependence between the optimum dose of the nanoparticles and various types of tumors is investigated in order to understand their thermal effect on hyperthermia therapy. The control of the temperature field in the tumor and healthy tissues is an important step in the healing treatment.
Keywords:  hyperthermia      magnetic nanoparticles      Bioheat equations  
Received:  27 July 2013      Revised:  13 September 2013      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  44.05.+e (Analytical and numerical techniques)  
  87.85.J- (Biomaterials)  
Fund: Project supported by the Parteneriate HYPERTHERMIA (Grant No. 148/2012).
Corresponding Authors:  Iordana Astefanoaei     E-mail:  iordana@uaic.ro
About author:  44.10.+i; 44.05.+e; 87.85.J-

Cite this article: 

Iordana Astefanoaei, Ioan Dumitru, Alexandru Stancu, Horia Chiriac A thermo-fluid analysis in magnetic hyperthermia 2014 Chin. Phys. B 23 044401

[1] Aebersold D M 2009 Liver International 29 145
[2] Chicel A, Skowronek J, Kubaszewska M and Kanikowski M 2007 Reports of Practical Oncology and Radiotherapy 12 267
[3] He Y, Shirazaki M, Liu H, Himeno R and Sun Z 2006 Computers in Biology and Medicine 36 1336
[4] Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R and Schlag P M 2002 Lancet Oncology 3 487
[5] Silva A C, Oliveira T R, Mamani J B, Malheiros S, Malavolta L, Pavon L F, Sibov T T, Amaro E, Tannús A, Vidoto L G, Martins M J, Santos R S and Gamarra L F 2011 International Journal of Nanomedicine 6 591
[6] Maenoso S and Saita S 2006 IEEE Trans. Magn. 42 1638
[7] Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
[8] Pavel M, Gradinariu G and Stancu A 2008 IEEE Trans. Magn. 44 11
[9] Hergt R and Dutz S 2007 J. Magn. Magn. Mater. 311 187
[10] Pavel M and Stancu A 2009 IEEE Trans. Magn. 45 4825
[11] Hergt R, Andra W, D'Ambly C G, Hilger I, Kaiser W A, Richter U and Schmidt H G 1998 IEEE Trans. Magn. 34 3745
[12] Lupu N, Chiriac H, Corodeanu S and Ababei G 2011 IEEE Trans. Magn. l4 3794
[13] Atsarkin V A, Levkin L V, Posvyanskiy V S, Melnikov O V, Markelova M N, Gorbenko O Y and Kaul A R 2009 International Journal of Hyperthermia 25 240
[14] Lee J H, Jang J, Choi J, Moon S H, Noh S, Kim J, Kim J G, Kim I S, Park K I and Cheon J 2011 Nat. Nanotechnol. 6 418
[15] Zhang Y, Gu H C and Wang X M 2007 J. Magn. Magn. Mater. 311 228
[16] Wang Q, Deng Z S and Liu J 2012 Journal of Nanoparticle Research 14 974
[17] Andrä W, d'Ambly C G, Hergt R, Hilger I and Kaiser W A 1999 J. Magn. Magn. Mater. 194 197
[18] Kolios M C, Sherar M D and Hunt J W 1995 Phys. Med. Bio. 40 477
[19] Horng T L, Lin W L, Liauh C T and Shih T C 2007 Med. Phys. 34 1312
[20] Thiriet M 2008 Biology and Mechanics of Blood Flows, Part II: Mechanics and Medical Aspects (New York: Springer) p. 20
[21] Pankhurst Q A, Connolly J, Jones S K and Dobson J 2003 J. Phys. D: Appl. Phys. 36 R167
[1] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[2] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[3] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[4] Hierarchical lichee-like Fe3O4 assemblies and their high heating efficiency in magnetic hyperthermia
Wen-Yu Li(李文宇), Wen-Tao Li(李文涛), Bang-Quan Li(李榜全), Li-Juan Dong(董丽娟), Tian-Hua Meng(孟田华), Ge Huo(霍格), Gong-Ying Liang(梁工英), and Xue-Gang Lu(卢学刚). Chin. Phys. B, 2021, 30(10): 104402.
[5] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[6] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[7] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[8] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[9] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[10] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[11] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[12] Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction
Xiao-Heng Yan(闫孝姮), Ying Zhang(张莹), Guo-Qiang Liu(刘国强). Chin. Phys. B, 2018, 27(10): 104302.
[13] Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles
Qiu Qing-Wei (邱庆伟), Xu Xiao-Wen (徐晓文), He Mang (何芒), Zhang Hong-Wang (张洪旺). Chin. Phys. B, 2015, 24(6): 067503.
[14] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[15] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
No Suggested Reading articles found!