Please wait a minute...
Chinese Physics, 2002, Vol. 11(8): 812-816    DOI: 10.1088/1009-1963/11/8/312
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure of hexagonal quantum-disc clusters

Wang Li-Min (王立民)ab, Luo Ying (罗莹)a, Ma Ben-Kun (马本堃)a, Liu Cheng-Shi (刘承师)a
a Department of Physics and Institute of Theoretical Physics, Beijing Normal University, Beijing 100875, China; b College of Physics, Hebei Normal University, Shijiazhuang 050016, China
Abstract  Within the effective-mass approximation, we investigate the electronic structure of hexagonal quantum-disc clusters using the finite element method. With an increasing amount of quantum dots in the cluster, the electronic energy levels quickly expand into mini-bands, each consisting of discrete, unevenly distributed energy levels. The corresponding electronic eigenfunctions are linear combinations of the electron orbits in each quantum dot. The spatial symmetry of the combination is the same as the electronic eigenfunction of a single quantum dot.
Keywords:  energy band      linear combination      spatial symmetry  
Received:  19 April 2002      Revised:  09 December 2001      Accepted manuscript online: 
PACS:  02.70.Dh (Finite-element and Galerkin methods)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  73.21.La (Quantum dots)  
  02.10.Ud (Linear algebra)  
Fund: Project supported by Scientific Research Foundation of College of Physics of Hebei Normal University.

Cite this article: 

Wang Li-Min (王立民), Luo Ying (罗莹), Ma Ben-Kun (马本堃), Liu Cheng-Shi (刘承师) Electronic structure of hexagonal quantum-disc clusters 2002 Chinese Physics 11 812

[1] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[2] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[3] Improvement of memory characteristics by employing a charge trapping layer with combining bent and flat energy bands
Zhen-Jie Tang(汤振杰), Rong Li(李荣), Xi-Wei Zhang(张希威). Chin. Phys. B, 2020, 29(4): 047701.
[4] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[5] One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects
Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航). Chin. Phys. B, 2017, 26(12): 127310.
[6] Electronic properties and topological phases of ThXY (X=Pb, Au, Pt and Y= Sb, Bi, Sn) compounds
Zahra Nourbakhsh, Aminollah Vaez. Chin. Phys. B, 2016, 25(3): 037101.
[7] Electronic band gap and transport in graphene superlattice with a Gaussian profile potential voltage
Zhang Yu-Ping (张玉萍), Yin Yi-Heng (尹贻恒), Lü Huan-Huan (吕欢欢), Zhang Hui-Yun (张会云). Chin. Phys. B, 2014, 23(2): 027202.
[8] Quantum confinement effects and source-to-drain tunneling in ultra-scaled double-gate silicon n-MOSFETs
Jiang Xiang-Wei(姜向伟) and Li Shu-Shen(李树深) . Chin. Phys. B, 2012, 21(2): 027304.
[9] Vibrational frequency of a strong-coupling polaron in a quantum rod at finite temperatures
Ding Zhao-Hua(丁朝华) and Xiao Jing-Lin(肖景林) . Chin. Phys. B, 2011, 20(9): 097104.
[10] Novel photoluminescence properties of InAlO3(ZnO)m superlattice nanowires
Liu Xin(刘欣), Huang Dong-Liang(黄东亮), Wu Li-Li(武立立), Zhang Xi-Tian(张喜田), and Zhang Wei-Guang(张伟光) . Chin. Phys. B, 2011, 20(7): 078101.
[11] First-principle calculation on the defect energy level of carbon vacancy in 4H–SiC
Jia Ren-Xu(贾仁需), Zhang Yu-Ming(张玉明), and Zhang Yi-Men(张义门). Chin. Phys. B, 2010, 19(10): 107105.
No Suggested Reading articles found!