CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The effect of k-cubic Dresselhaus spin–orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases |
Chai Zheng (柴政), Hu Mao-Jin (胡茂金), Wang Rui-Qiang (王瑞强), Hu Liang-Bin (胡梁宾) |
Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China |
|
|
Abstract We study the theoretical effect of k-cubic (i.e. cubic-in-momentum) Dresselhaus spin–orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin–orbit coupling, and after taking the effect of k-cubic Dresselhaus spin–orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results.
|
Received: 08 April 2013
Revised: 24 July 2013
Accepted manuscript online:
|
PACS:
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874049). |
Corresponding Authors:
Hu Liang-Bin
E-mail: lbhu26@yahoo.com
|
About author: 72.10.-d; 72.20.-i; 73.50.Jt |
Cite this article:
Chai Zheng (柴政), Hu Mao-Jin (胡茂金), Wang Rui-Qiang (王瑞强), Hu Liang-Bin (胡梁宾) The effect of k-cubic Dresselhaus spin–orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases 2014 Chin. Phys. B 23 027201
|
[1] |
Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer)
|
[2] |
Winkler R 2003 Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)
|
[3] |
Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
|
[4] |
Awschalom D D and Flatte M E 2007 Nat. Phys. 3 153
|
[5] |
Murakami S, Naogaosa N and Zhang S C 2003 Science 301 1348
|
[6] |
Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
|
[7] |
Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
|
[8] |
Jiang Z F, Li R D, Zhang S C and Liu W M 2005 Phys. Rev. B 72 045201
|
[9] |
Wu M W, Jiang J H and Weng M Q 2010 Phys. Rep. 493 61
|
[10] |
Bernevig B A, Orenstein J and Zhang S C 2006 Phys. Rev. Lett. 97 236601
|
[11] |
Weber C P, Orenstein J, Bernevig B A, Zhang S C, Stephens J and Awschalom D D 2007 Phys. Rev. Lett. 98 076604
|
[12] |
Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 610
|
[13] |
Kunihashi Y, Kohda M and Nitta J 2012 Phys. Rev. B 85 035321
|
[14] |
Kohda M, Lechner V, Kunihashi Y, Dollinger T, Olbrich P, Schohuber C, Caspers I, Belkov V V, Golub L E, Weiss D, Richter K, Nitta J and Ganichev S D 2012 Phys. Rev. B 86 081306
|
[15] |
Zhang L, Li H W and Hu L B 2012 Acta Phys. Sin. 61 177203 (in Chinese)
|
[16] |
Burkov A A, Nunez A S and MacDonald A H 2004 Phys. Rev. B 70 155308
|
[17] |
Malshokov A G, Yang L Y, Chu C S and Chao K A 2005 Phys. Rev. Lett. 95 146601
|
[18] |
Shytov A V, Mishchenko E G, Engel E H and Halperin B I 2006 Phys. Rev. B 73 075316
|
[19] |
Chang C H, Tsai J, Lo H F and Malshukov A G 2009 Phys. Rev. B 79 125310
|
[20] |
Xiong J W, Zhang Z X and Hu L B 2006 Chin. Phys. Lett. 23 1278
|
[21] |
Ding X H, Zhang C X, Wang R, Zhou Y Q and Kong L M 2012 Chin. Phys. B 21 037302
|
[22] |
Liu S, Yan Y Z and Hu L B 2012 Chin. Phys. B 21 027201
|
[23] |
Bychkov Y and Rashba E I 1984 J. Phys. C: Solid State Phys. 17 6039
|
[24] |
Dresselhaus G 1955 Phys. Rev. 100 580
|
[25] |
Mahan G D 1990 Many-Particle Physics (New York: Plenum Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|