Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020202    DOI: 10.1088/1674-1056/23/2/020202
GENERAL Prev   Next  

Simulation of shock-induced instability using an essentially conservative adaptive CE/SE method

Fu Zheng (付峥)a, Liu Kai-Xin (刘凯欣)a b, Luo Ning (罗宁)a b c
a LTCS and Department of Mechanics & Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China;
b Center for Applied Physics and Technology, Peking University, Beijing 100871, China;
c State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract  An essentially conservative adaptive space time conservation element and solution element (CE/SE) method is proposed for the effective simulation of shock-induced instability with low computational cost. Its implementation is based on redefined conservation elements (CEs) and solution elements (SEs), optimized interpolations and a Courant number insensitive CE/SE scheme. This approach is used in two applications, the Woodward double Mach reflection and a two-component Richtmyer–Meshkov instability experiment. This scheme reveals the essential features of the investigated cases, captures small unstable structures, and yields a solution that is consistent with the results from experiments or other high order methods.
Keywords:  CE/SE method      shock-induced instability      adaptive mesh refinement  
Received:  29 April 2013      Revised:  27 May 2013      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  47.11.-j (Computational methods in fluid dynamics)  
  47.40.Nm (Shock wave interactions and shock effects)  
  47.20.Cq (Inviscid instability)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10732010, 10972010, and 11028206) and the Opening Project of State Key Laboratory of Explosion Science and Technology, China (Grant No. KFJJ13-5M).
Corresponding Authors:  Liu Kai-Xin, Luo Ning     E-mail:  kliu@pku.edu.cn;ningl@pku.edu.cn
About author:  02.60.Cb; 47.11.-j; 47.40.Nm; 47.20.Cq

Cite this article: 

Fu Zheng (付峥), Liu Kai-Xin (刘凯欣), Luo Ning (罗宁) Simulation of shock-induced instability using an essentially conservative adaptive CE/SE method 2014 Chin. Phys. B 23 020202

[1] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297
[2] Meshkov E E 1969 Fluid Dyn. 4 101
[3] Nakai S and Takabe H 1996 Rep. Prog. Phys. 59 1071
[4] Yasunaga K, Mikajiri T, Sarathy S M, Koike T, Gillespie F, Nagy T, Simmie J M and Curran H J 2012 Combust. Flame. 159 2138
[5] Arnett D 2000 Astrophys. J. Suppl. Ser. 127 213
[6] Long C C, Krivets V V and Jacobs J W 2009 Phys. Fluids 21 114104
[7] Mikaelian K O 2011 Physica D 240 935
[8] Movahed P and Johnsen E 2013 J. Comput. Phys. 239 166
[9] Chang S C 1995 J. Comput. Phys. 119 295
[10] Wang X Y, Chang S C and Jorgenson P C E 2000 AIAA 2000-0474
[11] Wang G, Zhang D L and Liu K X 2007 Chin. Phys. Lett. 24 3563
[12] Wang G, Zhang D L and Liu K X 2010 Chin. Phys. Lett. 27 024701
[13] Wang G, Zhang D L and Liu K X 2011 Comput. Phys. Commun. 182 1589
[14] Wang J T, Liu K X and Zhang D L 2009 Comput. Fluids 38 544
[15] Chen Q Y, Chen Q Y, Wang J T and Liu K X 2010 J. Comput. Phys. 229 7503
[16] Chen Q Y and Liu K X 2011 Chin. Phys. Lett. 28 06460
[17] Jiang C W, Cui S X and Feng X S 2012 Comput. Fluids 54 105
[18] Fu Z and Liu K X 2012 Chin. Phys. B 21 040202
[19] Chang S C 2002 AIAA 2002-3890
[20] Skinner M A and Ostriker E C 2010 Astrophys. J. Suppl. Ser. 188 290
[21] Woodward P and Colella P 1984 J. Comput. Phys. 54 115
[22] Shi J, Zhang Y T and Shu C W 2003 J. Comput. Phys. 186 690
[23] Collins B D and Jacobs J W 2002 J. Fluid Mech. 464 113
[24] Latini M, Schilling O and Don W S 2007 Phys. Fluids 19 024104
[25] Ukai S, Balakrishnan K and Menon S 2011 Shock Waves 21 533
[1] An improved two-dimensional unstructured CE/SE scheme for capturing shock waves
Fu Zheng(付峥) and Liu Kai-Xin(刘凯欣) . Chin. Phys. B, 2012, 21(4): 040202.
No Suggested Reading articles found!