CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Direct-bandgap electroluminescence from tensile-strained Ge/SiGe multiple quantum wells at room temperature |
He Chao (何超), Liu Zhi (刘智), Zhang Xu (张旭), Huang Wen-Qi (黄文奇), Xue Chun-Lai (薛春来), Cheng Bu-Wen (成步文) |
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract Tensile-strained Ge/SiGe multiple quantum wells (MQWs) were grown on a Ge-on-Si virtual substrate using ultrahigh vacuum chemical vapor deposition on an n+-Si (001) substrate. Direct-bandgap electroluminescence from the MQWs light emitting diode was observed at room temperature. The quantum confinement effect of the direct-bandgap transitions is in good agreement with the theoretical calculated results. The redshift mechanism of emission wavelength related to the thermal effect is discussed.
|
Received: 28 February 2014
Revised: 30 May 2014
Accepted manuscript online:
|
PACS:
|
61.72.uf
|
(Ge and Si)
|
|
78.67.De
|
(Quantum wells)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632103), the National Natural Science Foundation of China (Grant Nos. 61036003, 61176013, and 61177038), and the High Technology Research and Development Program of China (Grant No. 2011AA010302). |
Corresponding Authors:
Cheng Bu-Wen
E-mail: cbw@semi.ac.cn
|
Cite this article:
He Chao (何超), Liu Zhi (刘智), Zhang Xu (张旭), Huang Wen-Qi (黄文奇), Xue Chun-Lai (薛春来), Cheng Bu-Wen (成步文) Direct-bandgap electroluminescence from tensile-strained Ge/SiGe multiple quantum wells at room temperature 2014 Chin. Phys. B 23 116103
|
[1] |
Jalali B and Fathpour S 2006 J. Lightw. Technol. 24 4600
|
[2] |
Koshida N and Koyama H 1992 Appl. Phys. Lett. 60 347
|
[3] |
Pavesi L, Dal N L, Mazzoleni C, Franzo G and Priolo F 2000 Nature 408 440
|
[4] |
Peng C S, Huang Q, Cheng W Q, Zhou J M, Zhang Y H, Sheng T T and Tung C H 1998 Phys. Rev. B 57 8805
|
[5] |
Zheng B, Michel J, Ren F, Kimerling L, Jacobson D and Poate J 1994 Appl. Phys. Lett. 64 2842
|
[6] |
Soref R A and Friedman L 1993 Superlattice. Microst. 14 189
|
[7] |
Groenert M E, Leitz C W, Pitera A J, Yang V, Lee H, Ram R J and Fitzgerald E A 2003 J. Appl. Phys. 93 362
|
[8] |
Fang A W, Park H, Cohen O, Jones R, Paniccia M J and Bowers J E 2006 Opt. Express 14 9203
|
[9] |
Liu J F, Sun X C, Pan D, Wang X X, Kimerling L C, Koch T L and Michel J 2007 Opt. Express 15 11272
|
[10] |
Liu J F, Sun X C, Camacho-Aguilera R, Kimerling L C and Michel J 2010 Opt. Lett. 35 679
|
[11] |
Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C and Michel J 2012 Opt. Express 20 11316
|
[12] |
Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1984 Phys. Rev. Lett. 53 2173
|
[13] |
Fidaner O, Okyay A K, Roth J E, Schaevitz R K, Kuo Y H, Saraswat K C, Harris J S and Miller D A B 2007 IEEE Photonic. Tech. Lett. 19 1631
|
[14] |
Zhao H W, Hu W X, Xue C L, Cheng B W and Wang Q M 2011 Chin. Phys. Lett. 28 014204
|
[15] |
Chaisakul P, Marris-Morini D, Isella G, Chrastina D, Izard N, Le Roux X, Edmond S, Coudevylle J R and Vivien L 2011 Appl. Phys. Lett. 99 141106
|
[16] |
Chen Y H, Li C, Lai H K and Chen S Y 2010 Nanotechnology 21 115207
|
[17] |
Hu W X, Cheng B W, Xue C L, Zhang G Z, Su S J, Zuo Y H and Wang Q M 2012 Chin. Phys. B 21 017805
|
[18] |
Liu Z, Hu W X, Li C, Li Y M, Xue C L, Li C B, Zuo Y H, Cheng B W and Wang Q M 2012 Appl. Phys. Lett. 101 231108
|
[19] |
van de Walle C G and Martin R M 1986 Phys. Rev. B 34 5621
|
[20] |
van de Walle C G 1989 Phys. Rev. B 39 1871
|
[21] |
Liu J F, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J and Kimerling L C 2004 Phys. Rev. B 70 155309
|
[22] |
Varshni Y 1967 Physica 34 149
|
[23] |
Piesbergen U 1963 Zeitschrift fuer Naturforschung A18 147
|
[24] |
Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D and Wang Q M 2009 Appl. Phys. Lett. 95 092102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|