Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 116103    DOI: 10.1088/1674-1056/23/11/116103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Direct-bandgap electroluminescence from tensile-strained Ge/SiGe multiple quantum wells at room temperature

He Chao (何超), Liu Zhi (刘智), Zhang Xu (张旭), Huang Wen-Qi (黄文奇), Xue Chun-Lai (薛春来), Cheng Bu-Wen (成步文)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

Tensile-strained Ge/SiGe multiple quantum wells (MQWs) were grown on a Ge-on-Si virtual substrate using ultrahigh vacuum chemical vapor deposition on an n+-Si (001) substrate. Direct-bandgap electroluminescence from the MQWs light emitting diode was observed at room temperature. The quantum confinement effect of the direct-bandgap transitions is in good agreement with the theoretical calculated results. The redshift mechanism of emission wavelength related to the thermal effect is discussed.

Keywords:  Ge      multiple quantum wells      tensile strain      electroluminescence  
Received:  28 February 2014      Revised:  30 May 2014      Accepted manuscript online: 
PACS:  61.72.uf (Ge and Si)  
  78.67.De (Quantum wells)  
  78.60.Fi (Electroluminescence)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB632103), the National Natural Science Foundation of China (Grant Nos. 61036003, 61176013, and 61177038), and the High Technology Research and Development Program of China (Grant No. 2011AA010302).

Corresponding Authors:  Cheng Bu-Wen     E-mail:  cbw@semi.ac.cn

Cite this article: 

He Chao (何超), Liu Zhi (刘智), Zhang Xu (张旭), Huang Wen-Qi (黄文奇), Xue Chun-Lai (薛春来), Cheng Bu-Wen (成步文) Direct-bandgap electroluminescence from tensile-strained Ge/SiGe multiple quantum wells at room temperature 2014 Chin. Phys. B 23 116103

[1] Jalali B and Fathpour S 2006 J. Lightw. Technol. 24 4600
[2] Koshida N and Koyama H 1992 Appl. Phys. Lett. 60 347
[3] Pavesi L, Dal N L, Mazzoleni C, Franzo G and Priolo F 2000 Nature 408 440
[4] Peng C S, Huang Q, Cheng W Q, Zhou J M, Zhang Y H, Sheng T T and Tung C H 1998 Phys. Rev. B 57 8805
[5] Zheng B, Michel J, Ren F, Kimerling L, Jacobson D and Poate J 1994 Appl. Phys. Lett. 64 2842
[6] Soref R A and Friedman L 1993 Superlattice. Microst. 14 189
[7] Groenert M E, Leitz C W, Pitera A J, Yang V, Lee H, Ram R J and Fitzgerald E A 2003 J. Appl. Phys. 93 362
[8] Fang A W, Park H, Cohen O, Jones R, Paniccia M J and Bowers J E 2006 Opt. Express 14 9203
[9] Liu J F, Sun X C, Pan D, Wang X X, Kimerling L C, Koch T L and Michel J 2007 Opt. Express 15 11272
[10] Liu J F, Sun X C, Camacho-Aguilera R, Kimerling L C and Michel J 2010 Opt. Lett. 35 679
[11] Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C and Michel J 2012 Opt. Express 20 11316
[12] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1984 Phys. Rev. Lett. 53 2173
[13] Fidaner O, Okyay A K, Roth J E, Schaevitz R K, Kuo Y H, Saraswat K C, Harris J S and Miller D A B 2007 IEEE Photonic. Tech. Lett. 19 1631
[14] Zhao H W, Hu W X, Xue C L, Cheng B W and Wang Q M 2011 Chin. Phys. Lett. 28 014204
[15] Chaisakul P, Marris-Morini D, Isella G, Chrastina D, Izard N, Le Roux X, Edmond S, Coudevylle J R and Vivien L 2011 Appl. Phys. Lett. 99 141106
[16] Chen Y H, Li C, Lai H K and Chen S Y 2010 Nanotechnology 21 115207
[17] Hu W X, Cheng B W, Xue C L, Zhang G Z, Su S J, Zuo Y H and Wang Q M 2012 Chin. Phys. B 21 017805
[18] Liu Z, Hu W X, Li C, Li Y M, Xue C L, Li C B, Zuo Y H, Cheng B W and Wang Q M 2012 Appl. Phys. Lett. 101 231108
[19] van de Walle C G and Martin R M 1986 Phys. Rev. B 34 5621
[20] van de Walle C G 1989 Phys. Rev. B 39 1871
[21] Liu J F, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J and Kimerling L C 2004 Phys. Rev. B 70 155309
[22] Varshni Y 1967 Physica 34 149
[23] Piesbergen U 1963 Zeitschrift fuer Naturforschung A18 147
[24] Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D and Wang Q M 2009 Appl. Phys. Lett. 95 092102
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[5] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[6] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[7] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[8] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[9] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[10] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[11] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[12] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[13] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[14] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[15] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
No Suggested Reading articles found!