Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 103304    DOI: 10.1088/1674-1056/23/10/103304
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Interferences in photo-detached electron spectra froma non-collinear tri-atomic anion

A. Afaqa, K. Farooqb, M. A. Khanb, Yi Xue-Xi (衣学喜)b
a Center of Excellence in Solid State Physics, University of the Punjab, Lahore-54590, Pakistan;
b School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  The electron flux oscillations in photo-detachment of a non-collinear tri-atomic anion have been studied by taking each atom of the system as a coherent source of detached-electron wave. These electron waves traversing along three different trajectories result in a quantum interference. An analytical expression of detached-electron flux is evaluated for various detached-electron energies and for different geometrical shapes of the system. The results show that the electron flux distributions exhibit molecular shape-induced oscillatory structures. These oscillations are explained using the semi-classical closed-orbit theory; the outgoing electron waves produced from one center are propagated in the vicinity of the sources at other centers. It is also observed that in a particular case our non-collinear tri-atomic system reduces to the collinear tri-atomic system recently published.
Keywords:  electron flux      collinear tri-atomic system      quantum interference  
Received:  24 February 2014      Revised:  24 May 2014      Accepted manuscript online: 
PACS:  33.80.-b (Photon interactions with molecules)  
  32.80.Gc (Photodetachment of atomic negative ions)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Corresponding Authors:  A. Afaq,K. Farooq     E-mail:  aafaq.cssp@pu.edu.pk;farooqdardyal@gmail.com
About author:  33.80.-b; 32.80.Gc; 32.80.Qk

Cite this article: 

A. Afaq, K. Farooq, M. A. Khan, Yi Xue-Xi (衣学喜) Interferences in photo-detached electron spectra froma non-collinear tri-atomic anion 2014 Chin. Phys. B 23 103304

[1]Blondel C, Delsart C and Goldfarb F 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L281
[2]Blondel C, Delsart C, Valli C, Yiou S, Godefroid M R and Van Eck S 2001 Phys. Rev. A 64 052504
[3]Bryant H C, Mohagheghi A, Stewart J E, Donahue J B, Quick C R, Reeder R A, Yuan V, Hummer C R, Smith W W, Cohen Stanley, Reinhardt William P and Overman Lillian 1987 Phys. Rev. Lett. 58 2412
[4]Steward J E 1988 Phys. Rev. A 38 5628
[5]Rau A R P and Wong H 1988 Phys. Rev. A 37 632
[6]Du M L and Delos J B 1988 Phys. Rev. A 38 5609
[7]Du M L 1989 Phys. Rev. A 40 4983
[8]Peters A D, Jaffé C and Delos J B 1997 Phys. Rev. A 56 331
[9]Fabrikan I 2002 Phys. Rev. A 66 010703
[10]Du M L and Delos J B 1987 Phys. Rev. Lett. 58 1731
[11]Du M L and Delos J B 1988 Phys. Rev. A 38 1896
[12]Du M L and Delos J B 1988 Phys. Rev. A 38 1913
[13]Afaq A and Du M L 2008 Commun. Theor. Phys. 50 1401
[14]Afaq A and Du M L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1309
[15]Afaq A and Du M L 2006 Commun. Theor. Phys. 46 119
[16]Afaq A, Ahmad I, Ahmad M A, Rashid A, Tahir B A and Hussain M T 2009 Appl. Phys. Lett. 94 041125
[17]Yang B C and Du M L 2010 Commun. Theor. Phys. 53 545
[18]Rahman A, Ahmad I, Afaq A and Zhao H J 2012 Chin. Phys. Lett. 29 043301
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!