Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 014702    DOI: 10.1088/1674-1056/23/1/014702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dual solutions in boundary layer flow of a moving fluid over a moving permeable surface in presence of prescribed surface temperature and thermal radiation

Swati Mukhopadhyay
Department of Mathematics, The University of Burdwan, Burdwan-713104, W. B., India
Abstract  An analysis of the heat transfer for a boundary layer forced convective flow past a moving permeable flat surface parallel to a moving fluid is presented. Prescribed surface temperature at the boundary is considered. A thermal radiation term in the energy equation is considered. The similarity solutions for the problem are obtained and the reduced ordinary differential equations are solved numerically. To support the validity of the numerical results, a comparison is made with the available results for some particular cases of this study. Dual solutions exist when the surface and the fluid move in the opposite directions.
Keywords:  moving fluid      prescribed surface temperature      suction      thermal radiation  
Received:  03 April 2013      Revised:  19 May 2013      Accepted manuscript online: 
PACS:  47.15.Cb (Laminar boundary layers)  
  44.20.+b (Boundary layer heat flow)  
  47.85.-g (Applied fluid mechanics)  
Corresponding Authors:  Swati Mukhopadhyay     E-mail:  swati_bumath@yahoo.co.in

Cite this article: 

Swati Mukhopadhyay Dual solutions in boundary layer flow of a moving fluid over a moving permeable surface in presence of prescribed surface temperature and thermal radiation 2014 Chin. Phys. B 23 014702

[1] Blasius H 1908 Zeitschrift für Mathematik und Physik 56 1
[2] Wang L 2004 Appl. Math. Comp. 157 1
[3] Cortell R 2005 Appl. Math. Comp. 170 706
[4] Sakiadis B C 1961 AIChE J. 7 26
[5] Afzal N, Badaruddin A and Elgarvi A A 1993 Int. J. Heat Mass Tranf. 36 3399
[6] Bataller R C 2008 Appl. Math. Comp. 198 333
[7] Cortell R 2008 Chin. Phys. Lett. 25 1340
[8] Ishak A 2009 Chin. Phys. Lett. 26 034701
[9] Klemp J B and Acrivos A 1976 J. Fluid Mech. 76 363
[10] Hussaini M Y, Lakin W D and Nachman A 1987 SIAM J. Appl. Math. 47 699
[11] Cortell R 2007 Theor. Comput. Fluid Dyn. 21 435
[12] Ishak A, Nazar R and Pop I 2009 Chem. Engng. J. 148 63
[13] Mukhopadhyay S 2011 Chin. Phys. Lett. 28 124706
[14] Mukhopadhyay S, Bhattacharyya K and Layek G C 2011 Int. J. Heat Mass Transf. 54 2751
[15] Brewster M Q 1972 Thermal Radiative Transfer Properties (John Wiley and Sons)
[16] Zheng L C, Zhang X X and Li B T 2009 Chin. Phys. Lett. 26 094101
[17] Bertolotti F P, Herbert T H and Spalart P R 1992 J. Fluid Mech. 242 441
[18] Weidman P D, Kubitschek D G and Davis A M J 2006 Int. J. Eng. Sci. 44 730
[19] Merkin J H 1994 J. Appl. Math. Phys. 45 258
[20] Postelnicu A and Pop I 2011 Appl. Math. Comp. 217 4359
[1] Erratum to “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux”
Swati Mukhopadhyay and Iswar Chandra Mandal. Chin. Phys. B, 2022, 31(5): 059902.
[2] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[3] Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions
Tasawar Hayat, Ikram Ullah, Taseer Muhammad, Ahmed Alsaedi, Sabir Ali Shehzad. Chin. Phys. B, 2016, 25(7): 074701.
[4] Room temperature direct-bandgap electroluminescence from a horizontal Ge ridge waveguide on Si
Chao He(何超), Zhi Liu(刘智), Bu-Wen Cheng(成步文). Chin. Phys. B, 2016, 25(12): 126104.
[5] Spectral enhancement of thermal radiation by laser fabricating grating structure on nickel surface
Liu Song (刘嵩), Liu Shi-Bing (刘世炳). Chin. Phys. B, 2015, 24(5): 054401.
[6] Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux
Swati Mukhopadhyay, Iswar Chandra Mandal. Chin. Phys. B, 2014, 23(4): 044702.
[7] MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation
Swati Mukhopadhyay, Iswar Ch, ra Moindal, Tasawar Hayat. Chin. Phys. B, 2014, 23(10): 104701.
[8] A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization
Zhou Bing (周兵), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 084401.
[9] Quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge
Xie Zhi-Kun (谢志堃), Pan Wei-Zhen (潘伟珍), Yang Xue-Jun (杨学军). Chin. Phys. B, 2013, 22(3): 039701.
[10] Effects of thermal radiation on Casson fluid flow and heat transfer over an unsteady stretching surface subjected to suction/blowing
Swati Mukhopadhyay. Chin. Phys. B, 2013, 22(11): 114702.
[11] A possible mechanism for magnetar soft X-ray/$\gamma$-ray emission
Gao Zhi-Fu(高志福), Peng Qiu-He(彭秋和), Wang Na(王娜), and Chou Chih-Kang(邹志刚) . Chin. Phys. B, 2012, 21(5): 057109.
[12] Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation
Pan Wei-Zhen(潘伟珍),Yang Xue-Jun(杨学军),and Xie Zhi-Kun(谢志堃) . Chin. Phys. B, 2011, 20(4): 049701.
[13] Thermal radiation and nonthermal radiation of the slowly changing dynamic Kerr--Newman black hole
Meng Qing-Miao(孟庆苗), Wang Shuai(王帅), Jiang Ji-Jian(蒋继建), and Deng De-Li(邓德力). Chin. Phys. B, 2008, 17(8): 2811-2816.
[14] Investigation on the thermal radiation properties of antimony doped tin oxide particles
Fu Cheng-Wu(傅成武), Zhang Shuan-Qin(张拴勤), and Chen Ming-Qing(陈明清) . Chin. Phys. B, 2008, 17(3): 1107-1112.
[15] Quantum radiation of non-stationary Kerr-Newman-de Sitter black hole
Jiang Qing-Quan (蒋青权), Yang Shu-Zheng (杨树政), Li Hui-Ling (李慧玲). Chin. Phys. B, 2005, 14(9): 1736-1744.
No Suggested Reading articles found!