Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 064401    DOI: 10.1088/1674-1056/22/6/064401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Thermal conductivity of a kind of mesoporous silica SBA-15

Huang Cong-Liang (黄丛亮)a, Feng Yan-Hui (冯妍卉)a, Zhang Xin-Xin (张欣欣)a, Li Jing (李静)a, Wang Ge (王戈)b
a School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
b School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Mesoporous silica SBA-15 consists of uniform hexagonal, unconnected cylindrical channels with diameters that can be tuned within a range of 1.5 nm-30 nm, and is thought to have a special thermal conductivity. The theoretical investigation of the shell thermal conductivity of the mesoporous silica is performed in the relaxation time approximation in this paper. And an available one-dimensional heat transfer model is used to predict the effective thermal conductivity (ETC) of the mesoporous silica. The experimental result of the ETC is also presented for comparison. The shell thermal conductivity of the mesoporous silica decreases with mesochannel radius increasing or wall thickness decreasing, but does not strictly decrease with porosity increasing. The thermal radiation possibly plays a primary role in heat transfer at the large porosity scale. The predicted ETC of SBA-15 with only conduction considered is quite low at the large porosity, even lower than the thermal conductivity of the silica aerogels. To realize it, doping carbon or other matters which can strongly absorb infrared light into SBA-15 is a possible way.
Keywords:  mesoporous silica      thermal conductivity      SBA-15  
Received:  29 August 2012      Revised:  23 October 2012      Accepted manuscript online: 
PACS:  44.30.+v (Heat flow in porous media)  
  61.43.Gt (Powders, porous materials)  
Fund: Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB720404),the National Natural Science Foundation of China (Grant No. 50836001), the FOK Ying Tong Education Foundation, China (Grant No. 121055), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. FRF-AS-12-002 and FRF-TP-11-001B).
Corresponding Authors:  Feng Yan-Hui     E-mail:  yhfeng@me.ustb.edu.cn

Cite this article: 

Huang Cong-Liang (黄丛亮), Feng Yan-Hui (冯妍卉), Zhang Xin-Xin (张欣欣), Li Jing (李静), Wang Ge (王戈) Thermal conductivity of a kind of mesoporous silica SBA-15 2013 Chin. Phys. B 22 064401

[1] Fesmire J E and Sass J P 2008 Cryogenics 48 223
[2] Fesmire J E 2006 Cryogenics 46 111
[3] Sopian K, Zulkifli R, Sahari J and Othman M Y 2002 J. Mater. Process. Technol. 123 179
[4] Nagoga G P, Anurov Yu M and Belousov A I 1986 J. Eng. Physic. Thermophysics 51 884
[5] Yamamoto K, Sunagawa Y, Takahashi H and Muramatsu A 2005 Chem. Commun. 0(3) 348
[6] Wang Z, Xie Y and Liu C 2008 J. Phys. Chem. C 112 19818
[7] Sasidharan M, Mal N K and Bhaumik A 2007 J. Mater. Chem. 17 278
[8] Zhang W, Cui J, Tao C, Lin C, Wu Y and Li G 2009 Langmuir. 25 8235
[9] Coquil T, Richman E K, Hutchinson N J, Tolbert S H and Pilon L 2009 J. Appl. Phys. 106 034910
[10] Choi S G, Ha T J, Yu B G, Jaung S P, Kwon O and Park H H 2008 Ceram. Int. 34 833
[11] Yang C, Liu P, Ho Y, Chiu C and Chao K 2003 Chem. Mater. 15 275
[12] Melero J A, Stucky G D, van Grieken R and Morales G 2002 J. Mater. Chem. 12 1664
[13] Zhao D, Sun J, Li Q and Stucky G D 2000 Chem. Mater. 12 275
[14] Han Y J and Klemens P G 1993 Phys. Rev. B 48 6033
[15] Callaway J 1959 Phys. Rev. 113 1046
[16] Balandin A and Wang K L 1998 Phys. Rev. B 58 1544
[17] Klemens P G 1958 Solid State Physics ed. Seitz F and Turnbull D (New York: Academic) p. 1
[18] Klemens P G 1997 in Chemstry and Physics of Nanostructures and Related Non-Equilibrium Materials, ed. Ma E, Fultz B, Shall R, Morral J and Nash P (Warrendale: Minerals, Metals, & Materials Society) p. 97
[19] Lu X, Chu J H and Shen W Z 2003 J. Appl. Phys. 93 1219
[20] Zou J and Balandin A 2001 J. Appl. Phys. 89 2932
[21] Stephens R B 1973 Phys. Rev. B 8 2896
[22] Zarzycki J 1982 Les Verres et l'E' tat Vitreux (Paris: Masson), and references therein
[23] Jund P and Jullien R 1999 Phys. Rev. B 59 13707
[24] Khitun A, Balandin A and Wang K L 1999 Superlatt. Microstruct. 26 181
[25] Huang W Q, Chen K Q, Shuai Z, Wang L L and Hu W Y 2005 Int. J. Mod. Phys. B 19 1017
[26] Galarneau A, Cambon H, Renzo F D, Ryoog R, Choib M and Fajula F 2003 New J. Chem. 27 73
[27] Williams Q, Hemley R J, Kruger M B and Jeanloz R 1993 J. Geophys. Res. 98 22157
[28] Cahill D G and Pohl R O 1987 Phys. Rev. B 35 4067
[29] Horbach J, Kob W and Binder K 1999 J. Phys. Chem. B 103 4104
[30] Zeller R C and Pohl R O 1971 Phys. Rev. B 4 2029
[31] Huang C, Feng Y, Zhang X, Wang G and Li J 2011 Acta Phys. Sin. 60 114401 (in Chinese)
[32] Ross R G, Andersson P, Sundqvist B and Backstrom G 1984 Rep. Prog. Phys. 47 1347
[33] Jain A, Rogojevic S, Ponoth S, Gill W N, Plawsky J L, Simonyi E, Chen S T and Ho P S 2002 J. Appl. Phys. 91 3275
[34] Chantrenne P and Barrat J L 2004 J. Heat Transfer 126 577
[35] Huang C, Feng Y, Zhang X, Li W, Yang M, Li J and Wang G 2012 Acta Phys. Sin. 61 154402 (in Chinese)
[36] Fricke J and Tillotson T 1997 Thin Solid Films 297 212
[37] Wei G, Liu Y, Zhang X, Yu F and Du X 2011 Int. J. Heat Mass Transfer 54 2355
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[15] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
No Suggested Reading articles found!