Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 054202    DOI: 10.1088/1674-1056/22/5/054202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Continuous imaging space in three-dimensional integral imaging

Zhang Lei (张雷), Yang Yong (杨勇), Wang Jin-Gang (王金刚), Zhao Xing (赵星), Fang Zhi-Liang (方志良), Yuan Xiao-Cong (袁小聪)
Institute of Modern Optics, Nankai University, Tianjin 300071, China; Key Laboratory of Optical Information Science and Technology of Ministry of Education, Nankai University, Tianjin 300071, China
Abstract  We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters.
Received:  22 August 2012      Revised:  04 November 2012      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Va (Image forming and processing)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB327702).
Corresponding Authors:  Yuan Xiao-Cong     E-mail:  xcyuan@nankai.edu.cn

Cite this article: 

Zhang Lei (张雷), Yang Yong (杨勇), Wang Jin-Gang (王金刚), Zhao Xing (赵星), Fang Zhi-Liang (方志良), Yuan Xiao-Cong (袁小聪) Continuous imaging space in three-dimensional integral imaging 2013 Chin. Phys. B 22 054202

[1] Lippmann G 1908 Comptes Rendus Acad. Sci. 146 446
[2] Park S G, Song B S and Min S W 2010 Opt. Soc. Kor. 14 121
[3] Qin X and Gao J Y 2012 Chin. Phys. B 21 020303
[4] Qiao N S, Cai X H and Yao C M 2009 Chin. Phys. B 18 4481
[5] Wang S, Jiang J J, Xu S M and Li H Q 2010 Chin. Phys. B 19 014208
[6] Qiao N S and He Z 2012 Chin. Phys. B 20 094203
[7] Park J H, Hong K and Lee B 2009 Appl. Opt. 48 H77
[8] Kakeya H, Sawada S, Ueda Y and Kurokawa T 2012 Opt. Express 20 1963
[9] Kim J, Jung J H, Hong J, Yeom J and Lee B 2012 J. Opt. Soc. Kor. 16 29
[10] Xu Y, Wang X R, Sun Y and Zhang J Q 2012 Opt. Express 20 14137
[11] Navarro H, Barreiro J C, Saavedra G, Martinez-Corral M and Javidi B 2012 Opt. Express 20 890
[12] Luo C G, Wang Q H, Deng H, Gong X X, Li L and Wang F N 2012 J. Display Technol. 8 112
[13] Jang J S and Javidi B 2003 Opt. Lett. 28 1924
[14] Kim Y, Park S G, Min S W and Lee B 2011 Appl. Opt. 50 B18
[1] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[2] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[3] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[4] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[5] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
[6] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[7] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[8] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[9] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[10] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[11] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[12] Single pixel imaging based on semi-continuous wavelet transform
Chao Gao(高超), Xiaoqian Wang(王晓茜), Shuang Wang(王爽), Lidan Gou(苟立丹), Yuling Feng(冯玉玲), Guangyong Jin(金光勇), and Zhihai Yao(姚治海). Chin. Phys. B, 2021, 30(7): 074201.
[13] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[14] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[15] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
No Suggested Reading articles found!