Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 045202    DOI: 10.1088/1674-1056/22/4/045202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Enhanced optical absorption by Ag nanoparticles in thin film Si solar cell

Chen Feng-Xiang(陈凤翔), Wang Li-Sheng(汪礼胜), Xu Wen-Ying (许文英)
Department of Physics Science and Technology, Wuhan University of Technology, Wuhan 430070, China
Abstract  Thin film solar cells have potentials to significantly reduce the cost of photovoltaics. Light trapping is crucial to such a thin film silicon solar cell because of a low absorption coefficient due to its indirect band gap. In this paper, we investigate the suitability of surface plasmon resonance Ag nanoparticles for enhancing optical absorption in the thin film solar cell. For evaluating the transmittance capability of Ag nanoparticles and the conventional antireflection film, an enhanced transmittance factor is introduced. We find that under the solar spectrum AM1.5, the transmittance of Ag nanoparticles with radius over 160 nm is equivalent to that of conventional textured antireflection film, and its effect is better than that of the planar antireflection film. The influence of the surrounding medium is also discussed.
Keywords:  transmittance      surface plasmon resonance      Ag nanoparticles      thin film solar cells  
Received:  18 July 2012      Revised:  11 October 2012      Accepted manuscript online: 
PACS:  52.25.Tx (Emission, absorption, and scattering of particles)  
  88.40.jj (Silicon solar cells)  
  88.40.fc (Modeling and analysis)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 2011-Ia-002 and 2012-Ia-031).
Corresponding Authors:  Chen Feng-Xiang     E-mail:  phonixchen79@yahoo.com.cn

Cite this article: 

Chen Feng-Xiang(陈凤翔), Wang Li-Sheng(汪礼胜), Xu Wen-Ying (许文英) Enhanced optical absorption by Ag nanoparticles in thin film Si solar cell 2013 Chin. Phys. B 22 045202

[1] Hu L, Chen X Y and Chen G 2008 J. Comput. Theor. Nanos 5 2096
[2] Losurdo M, Giangregorio M M, Bianco G V, Sacchetti A, Capezzuto P and Bruno G 2009 Sol. Energy Mater. Sol. Cells 93 1749
[3] Wu Y C and Gu Z T 2008 Acta Phys. Sin. 57 2295 (in Chinese)
[4] Chen L L, Gu Y, Wang L J and Gong Q H 2007 Chin. Phys. 16 249
[5] Wang J F, Li H J, Zhou Z Y, Li X Y, Liu J and Yang H Y 2010 Chin. Phys. B 19 117310
[6] Zhong R B, Liu W H, Zhou J and Liu S G 2012 Chin. Phys. B 21 117303
[7] Zhao H J 2012 Chin. Phys. B 21 087104
[8] Huang Q, Zhang X D, Wang S, Cao L R, Sun J, Geng W D, Xiong S Z and Zhao Y 2009 Acta Phys. Sin. 58 2731 (in Chinese)
[9] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H and Zhao Y 2010 Chin. Phys. B 19 047304
[10] Zhou B, Li D S, Xiang L L and Yang D R 2010 Chin. Phys. Lett. 27 037303
[11] Bai J M and Wang J P 2005 Appl. Phys. Lett. 87 152502
[12] Flores J C, Torres V, Popa M, Crespo D and Calderon J M 2008 J. Non-cryst. Solids 354 5435
[13] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: JohnWiley & Sons) pp. 99-107
[14] Li Q, Wang L Z, Lu G Q, Huang Y and Zhu X F 2011 Acta Opt. Sin. 31 0726001
[15] Johnson P B and Christy R W 1972 Phys. Rev. B. 6 4370
[16] Han T, Meng F Y, Zhang S, Wang J Q and Chen X M 2011 Acta Phys. Sin. 60 027303 (in Chinese)
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[6] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[7] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[8] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[9] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[10] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[11] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[12] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[13] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[14] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[15] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
No Suggested Reading articles found!