Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 045201    DOI: 10.1088/1674-1056/22/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Analysis of electron energy distribution function in a magnetically filtered complex plasma

M K Deka, H Bailung, N C Adhikary
Physical Sciences Division, Institute of Advanced Study in Science and Technology,Vigyan Path, Paschim Boragaon, Garchuk, Guwahati-781035, Assam, India
Abstract  The electron energy distribution function (EEDF) for a magnetically filtered dusty plasma is studied in a dusty double plasma device where the electron energy can be varied from 0.15 eV to ~ 2.8 eV and plasma density from 106 cm-3 to 109 cm-3. The characteristics of EEDF for these ranges of plasma parameters are investigated in a pristine plasma as well as in a dusty plasma. The results show that in the presence of dust, there is a drastic modification in EEDF patterns in a plasma with higher electron temperature and density than those in a low temperature and low density plasma produced by the magnetic filter.
Keywords:  dusty plasma      magnetic filter      electron energy distribution function  
Received:  10 September 2012      Revised:  06 December 2012      Accepted manuscript online: 
PACS:  52.25.-b (Plasma properties)  
  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.20.-j (Elementary processes in plasmas)  
Corresponding Authors:  N C Adhikary     E-mail:  nirab_iasst@yahoo.com

Cite this article: 

M K Deka, H Bailung, N C Adhikary Analysis of electron energy distribution function in a magnetically filtered complex plasma 2013 Chin. Phys. B 22 045201

[1] Samukawa S 1994 Jpn. J. Appl. Phys. 33 2133
[2] Kato K, Iizuka S and Sato N 1994 Appl. Phys. Lett. 65 816
[3] Huang X J, Xin Y, Zhang J and Ning Z Y 2009 Chin. Phys. Lett. 26 055202
[4] Li G, Zhang Y, Xu Y J, Lin B, Li Y T and Zhu J Q 2009 Chin. Phys. Lett. 26 105202
[5] Ding Q Y, Zhang S B and Wang J G 2011 Chin. Phys. Lett. 28 053202
[6] Wang D Y, Ma J X, Li Y R and Zhang W G 2009 Acta Phys. Sin. 58 8432 (in Chinese)
[7] Liu X M, Song Y H and Wang Y N 2011 Chin. Phys. B 20 065205
[8] Denysenko I, Yu M Y, Ostrikov K, Azarenkov N A and Stenflo L 2004 Phys. Plasmas 11 4959
[9] Lieberman M A and Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley) p. 711
[10] Godyak V A, Piejak R B and Alexandrovich B M 1992 Phys. Rev. Lett. 68 40
[11] Godyak V A, Piejak R B and Alexandrovich B M 1995 Plasma Sources Sci. Technol. 4 332
[12] Smolyakov A I, Godyak V A and Tyshetskiy Y 2001 Phys. Plasmas 8 3857
[13] Sugai H, Ghanashev I, Hosokawa M, Misuno K, Nakamura K, Toyoda H and Yamauchi K 2001 Plasma Sources Sci. Technol. 10 378
[14] Xu S, Ostrikov K, Li Y N, Tsakadze E and Jones I R 2001 Phys. Plasmas 8 2549
[15] Druyvesteyn M J and Penning F M 1940 Rev. Mod. Phys. 12 87
[16] Shi F, Zhang L L and Wang D Z 2009 Chin. Phys. B 18 1177
[17] Sun J Z, Li X T, Bai J and Wang D Z 2012 Chin. Phys. B 21 055205
[18] Li W, Chen J F and Wang T 2009 Chin. Phys. B 18 2441
[19] Lin K X, Lin X Y, Chi L F, Yu C Y, Yao R H and Yu Y P 2009 Chin. Phys. B 18 198
[20] Shukla P K 2001 Phys. Plasmas 8 1791
[21] Wang J, Liu G, Yao L M and Duan X R 2012 Acta Phys. Sin. 61 075205 (in Chinese)
[22] Denysenko I, M Y Yu, Ostrikov K and Smolyakov A 2004 Phys. Rev. E 70 046403
[23] Ostrikov K, Denysenko I, Yu M Y and Xu S 2004 J. Plasma Phys. 71 part 2, 1
[24] Gudmundsson J T 2001 Plasma Sources Sci. Technol. 10 76
[25] Bibinov N K, Kokh D B, Kolokolov N B, Kostenko V A, Meyer D, Vinogradov I P and Wiesemann K 1998 Plasma Sources Sci. Technol. 7 298
[26] Godyak V A, Piejak R B and Alexandrovich B M 1995 Plasma Sources Sci. Technol. 4 332
[27] Chakraborty M, Kausik S S, Saikia B K, Kakati M and Bujarbarua S 2003 Phys. Plasmas 10 2
[28] Kausik S S, Chakraborty M and Saikia B K 2007 Phys. Plasmas 14 024502
[29] Bailung H, Deka M K, Adhikary N C and Nakamura Y 2010 Plasma Sources Sci. Technol. 19 055005
[30] de Angelis U and Forlani A 1998 Phys. Plasmas 5 3068
[31] Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: Institute of Physics Publishing) p. 51
[32] Grill A 1994 Cold Plasma in Materials Fabrication: From Fundamentals to Applications (New York: IEEE Press) p. 9
[33] Anukaliani A and Selvarajan V 2001 Eur. Phys. J. AP 15 199
[34] Holmes A J T 1982 Rev. Sci. Instrum. 53 1517
[35] Franz G 2009 Low Pressure Plasmas and Microstructuring Technology (Berlin/Heidelberg: Springer-Verlag) p. 7
[36] Adhikary N C, Deka M K and Bailung H 2009 Phys. Plasmas 16 063701
[1] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[2] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[3] Large-amplitude dust acoustic solitons in an opposite polarity dusty plasma with generalized polarization force
Mahmood A. H. Khaled, Mohamed A. Shukri, and Yusra A. A. Hager. Chin. Phys. B, 2022, 31(1): 010505.
[4] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[5] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[6] Directional motion of dust particles at different gear structuresin a plasma
Chao-Xing Dai(戴超星), Chao Song(宋超), Zhi-Xiang Zhou(周志向), Wen-Tao Sun(孙文涛), Zhi-Qiang Guo(郭志强), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2020, 29(2): 025203.
[7] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[8] On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas
M Shahmansouri, N Khodabakhshi. Chin. Phys. B, 2018, 27(10): 105206.
[9] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[10] Rotation of a single vortex in dusty plasma
Jia Yan(闫佳), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2017, 26(9): 095202.
[11] Mode transition in dusty micro-plasma driven by pulsed radio-frequency source in C2H2/Ar mixture
Xiang-Mei Liu(刘相梅), Rui Li(李瑞), Ya-Hui Zheng(郑亚辉). Chin. Phys. B, 2017, 26(4): 045202.
[12] Short-pulse high-power microwave breakdown at high pressures
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Feng Ju (冯菊). Chin. Phys. B, 2015, 24(2): 025101.
[13] Validity of the two-term Boltzmann approximation employed in the fluid model for high-power microwave breakdown in gas
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Yang Dan (杨丹), Zhong Xuan-Ming (钟选明). Chin. Phys. B, 2014, 23(5): 055101.
[14] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[15] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng(杨秀峰), Wang Shan-Jin(王善进), Chen Jian-Min(陈建敏), Shi Yu-Ren(石玉仁), Lin Mai-Mai(林麦麦), and Duan Wen-Shan(段文山) . Chin. Phys. B, 2012, 21(5): 055202.
No Suggested Reading articles found!