Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030513    DOI: 10.1088/1674-1056/22/3/030513
REVIEW Prev   Next  

Mathematical structure of the three-dimensional (3D) Ising model

Zhang Zhi-Dong (张志东)
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  An overview of the mathematical structure of the three-dimensional (3D) Ising model is given from the viewpoints of topology, algebra, and geometry. By analyzing the relationships among transfer matrices of the 3D Ising model, Reidemeister moves in the knot theory, Yang-Baxter and tetrahedron equations, the following facts are illustrated for the 3D Ising model. 1) The complexified quaternion basis constructed for the 3D Ising model naturally represents the rotation in a (3+1)-dimensional space-time as a relativistic quantum statistical mechanics model, which is consistent with the 4-fold integrand of the partition function obtained by taking the time average. 2) A unitary transformation with a matrix that is a spin representation in 2n·l·o-space corresponds to a rotation in 2n·l·o-space, which serves to smooth all the crossings in the transfer matrices and contributes the non-trivial topological part of the partition function of the 3D Ising model. 3) A tetrahedron relation would ensure the commutativity of the transfer matrices and the integrability of the 3D Ising model, and its existence is guaranteed by the Jordan algebra and the Jordan-von Neumann-Wigner procedures. 4) The unitary transformation for smoothing the crossings in the transfer matrices changes the wave functions by complex phases φx, φy, and φz. The relationship with quantum field and gauge theories and the physical significance of the weight factors are discussed in detail. The conjectured exact solution is compared with numerical results, and the singularities at/near infinite temperature are inspected. The analyticity in β=1/(kBT) of both the hard-core and the Ising models has been proved only for β>0, not for β=0. Thus the high-temperature series cannot serve as a standard for judging a putative exact solution of the 3D Ising model.
Keywords:  Ising model      topology      algebra      geometry  
Received:  24 December 2012      Accepted manuscript online: 
PACS:  05.50.+q (Lattice theory and statistics)  
  75.10.Hk (Classical spin models)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50831006).
Corresponding Authors:  Zhang Zhi-Dong     E-mail:  zdzhang@imr.ac.cn

Cite this article: 

Zhang Zhi-Dong (张志东) Mathematical structure of the three-dimensional (3D) Ising model 2013 Chin. Phys. B 22 030513

[1] Onsager L 1944 Phys. Rev. 65 117
[2] Zhang Z D 2007 Phil. Mag. 87 5309
[3] Wu F Y, McCoy B M, Fisher and Chayes L 2008 Phil. Mag. 88 3093
[4] Zhang Z D 2008 Phil. Mag. 88 3097
[5] Wu F Y, McCoy B M, Fisher and Chayes L 2008 Phil. Mag. 88 3103
[6] Perk J H H 2009 Phil. Mag. 89 761
[7] Zhang Z D 2009 Phil. Mag. 89 765
[8] Perk J H H 2009 Phil. Mag. 89 769
[9] Lwrynowicz J, Marchiafava S and Niemczynowicz A 2010 Adv. Appl. Clifford Alg. 20 733
[10] Lawrynowicz J, Marchiafava S and Nowak-Kçpczyk M 2008 Trends inDifferential Geometry, Complex Analysis and Mathemtical Physics, Proceedingsof the 9th International Workshop on Complex Structures, Integrability andVector Fields, Sofia, Bulgaria, 25-29 August 2008 (Sekigawa K, Gerdjikov VS and Dimiev S, ed.) (Singapore: World Scientific) pp.156-166
[11] Lawrynowicz J, Nowak-Kepczyk M and Suzuki O 2012 Inter. J. Bifurcation Chaos 22 1230003
[12] Lawrynowicz J, Suzuki O and Niemczynowicz A 2012 Adv. Appl. Clifford Alg. 22 757
[13] Kaufman B 1949 Phys. Rev. 76 1232
[14] Lou S L and Wu S H 2000 Chin. J. Phys. (Taiwan) 38 841
[15] Jordan P, von Neumann J and Wigner E 1934 Ann. Math. 35 29
[16] de Leo S and Rodrigues Jr W A 1997 Inter. J. Theor. Phys. 36 2725
[17] Finkelstein D, Jauch J M, Schiminovich S and Speiser D 1962 J. Math. Phys. 3 207
[18] Marchiafava S and Rembieliński J 1992 J. Math. Phys. 33 171
[19] Adler S L 1995 Quaternion Quantum Mechanics and Quantum Fields (New York: Oxford University Press)
[20] de Leo S 1996 J. Math. Phys. 37 2955
[21] Zhang Z D and March N H arXiv:1110.5527. to appear in Bull. Soc. Sci.Lett. Lódź Sér. Rech. Déform. 62 (2012)
[22] Istrail S 2000 Proceedings of the 32nd ACM Symposium on the Theory of Computing (STOC00) (Portland: ACM Press) pp.87-96
[23] Kauffman L H 2001 Knots and Physics (3rd edn.) (Singapore: World Scientific Publishing)
[24] Kauffman L H 2005 Rep. Prog. Phys. 68 2829
[25] Kauffman L H 2007 Knot Theory and Physics, in the Encyclopedia of Mathematical Physics (Francoise J P, Naber G L and Tsun T S, ed.)(Amsterdam: Elsevier)
[26] Wu F Y 1982 Rev. Mod. Phys. 54 235
[27] Jones V F R 2007 The Jones Polynomial, in the Encyclopedia of Mathematical Physics (Francoise J P, Naber G L and Tsun T S, ed.)(Amsterdam: Elsevier)
[28] Newell G F and Montroll E W 1953 Rev. Mod. Phys. 25 353
[29] Baxter R J 1982 Exactly Solved Models in Statistics Mechanics (London: Academic Press)
[30] Baxter R J 1972 Ann. Phys. 70 193
[31] Baxter R J 1995 J. Stat. Phys. 78 7
[32] Baxter R J, Perk J H H and Au-Yang H 1988 Phys. Lett. A 128 138
[33] Baxter R J 1993 Int. J. Mod. Phys. B 7 3489
[34] Perk J H H and Au-Yang H 2007 Yang-Baxter Equations, in the Encyclopedia of Mathematical Physics (Francoise J P, Naber G L and Tsun T S,Ed.) (Amsterdam: Elsevier)
[35] Wannier G H 1945 Rev. Mod. Phys. 17 50
[36] Houtappel R M F 1950 Physica. 16 425
[37] Shankar R and Witten E 1978 Phys. Rev. D 17 2134
[38] Lieb E H and Liniger W 1963 Phys. Rev. 130 1605
[39] Yang C N and Yang C P 1966 Phys. Rev. 150 321
[40] Yang C N 1967 Phys. Rev. Lett. 19 1312
[41] Lieb E H 1967 Phys. Rev. Lett. 18 1046
[42] Sutherland B 1967 Phys. Rev. Lett. 19 103
[43] Baxter R J 1971 Studies Appl. Math. 50 51
[44] Baxter R J and Andrews G E 1986 J. Stat. Phys. 44 249
[45] Baxter R J and Wu F Y 1973 Phys. Rev. Lett. 31 1294
[46] Baxter R J 1980 J. Phys. A 13 L61
[47] Fateev V A and Zamolodchikov A B 1982 Phys. Lett. A 92 37
[48] Kashiwara M and Miwa T 1986 Nucl. Phys. B 275 121
[49] Andrews G E, Baxter R J and Forrester P J 1984 J. Stat. Phys. 35 193
[50] Baxter R J 1997 Int. J. Mod. Phys. B 11 27
[51] Zamolodchikov A B 1980 Sov. Phys. JETP 52 325
[52] Zamolodchikov A B 1981 Commun. Math. Phys. 79 489
[53] Jaekel M T and Maillard J M 1982 J. Phys. A 15 1309
[54] Stroganov Yu G 1997 Theor. Math. Phys. 110 141
[55] Kashaev R M 1996 Lett. Math. Phys. 38 389
[56] Kashaev R M, Korepanov I G and Sergeev S M 1998 Theor. Math. Phys. 117 1402
[57] Korepanov I G 1999 Theor. Math. Phys. 118 319
[58] Bazhanov V V and Baxter R J 1992 J. Stat. Phys. 69 453
[59] Bazhanov V V and Baxter R J 1993 J. Stat. Phys. 71 839
[60] Witten E 1988 Commun. Math. Phys. 118 411
[61] Witten E 1989 Nucl. Phys. B 322 629
[62] Witten E 1989 Commun. Math. Phys. 121 351
[63] Atiyah M F 1988 Proc. Symp. Pure Math. 48 285
[64] Floer A 1987 Bull. Am. Math. Soc. 16 279
[65] Donaldson S 1983 J. Differ. Geom. 18 269
[66] Donaldson S 1987 J. Differ. Geom. 26 397
[67] Witten E 1988 Commun. Math. Phys. 117 353
[68] Caselle M, Gliozzi F, Magnea U and Vinti S 1996 Nul. Phys. B 460 397
[69] Caselle M, Fiore R, Gliozzi F, Hasenbusch M and Provero P 1997 Nul. Phys. B 486 245
[70] Witten E 1989 Nucl. Phys. B 330 285
[71] Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[72] Rosengren A 1986 J. Phys. A 19 1709
[73] Fisher M E 1995 J. Phys. A 28 6323
[74] Kikuchi R 1951 Phys. Rev. 81 988
[75] Oguchi T 1950 J. Phys. Soc. Jpn. 5 75
[76] Oguchi T 1951 J. Phys. Soc. Jpn. 6 27
[77] Oguchi T 1951 J. Phys. Soc. Jpn. 6 31
[78] Wakefield A J 1951 Proc. Camb. Phil. Soc. 47 419
[79] Wakefield A J 1951 Proc. Camb. Phil. Soc. 47 799
[80] Bethe H A 1935 Proc. Roy. Soc. A 150 552
[81] Kirkwood J G 1938 J. Chem. Phys. 6 70
[82] Binder K and Luijten E 2001 Phys. Rep. 344 179
[83] Pelissetto A and Vicari E 2002 Phys. Rep. 368 549
[84] Wilson K G and Kogut J 1974 Phys. Rep. 12 75
[85] Fisher M E 1967 Rep. Prog. Phys. 30 615
[86] Domb C 1974 Phase Transitions and Critical Phenomena (Domb C and Green M S, ed.) Vol. 3 (London: AcademicPress)
[87] Kadanoff L P, Götze W, Hamblen D, Hecht R, Lewis E A S, Palciauskas V V, Rayl M, Swift J, Aspnes D and Kane J 1967 Rev. Mod. Phys. 39 395
[88] Domb C and Sykes M F 1961 J. Math. Phys. 2 63
[89] Domb C and Sykes M F 1962 Phys. Rev. 128 168
[90] Vicentini-Missoni M 1972 Equilibrium Scaling in Fluids and Magnets, in Phase Transitions and Critical Phenomena (Domb C and Green M S, ed.) Vol. 2 (London:Academic Press)
[91] Kadanoff L P 1976 Scaling, Universality and Operator Algebras, in Phase Transitions and Critical Phenomena (Domb C and Green M S, Ed.) Vol. 5a (London:Academic Press)
[92] Zhang Z D and March N H 2011 Phase Transitions. 84 299
[93] Perk J H H arXiv:1209.0731v2. Bull. Soc. Sci. Letters Lódź Sér. Rech.Déform. 62 (2012); and 63 (2013)
[94] Zhang Z D and March N H arXiv:1209.3247v4. Bull. Soc. Sci. Letters Lódź Sér. Rech.Déform. 62 (2012), and 63 (2013) in press
[95] Sinai Ya G 1982 Theory of Phase Transitions: Rigorous Results (Oxford: Pergamon Press) Chap. 2
[96] Glimm J and Jaffe A 1987 Quantum Physics (2nd edn.) (New York: Springer) Chap. 18, 20
[97] Israel R B 1976 Commun. Math. Phys. 50 245
[98] Zahradnik M 1987 J. Stat. Phys. 47 725
[99] Lebowitz J L and Penrose O 1968 Commun. Math. Phys. 11 99
[100] Griffiths R B 1972 Rigorous Results and Theorems, in Phase Transitions and Critical Phenomena (Domb C and Green M S, Ed.) Vol. 1 (New York:Academic Press)
[101] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[102] Gallavotti G and Miracle-Sol\'e S 1968 Commun. Math. Phys. 7 274
[103] Ruelle D 1969 Statistical Mechanics, in Rigorous Results (New York: Benjamin)
[104] Miracle-Solé S 1976 Theorems on Phase Transitions with a Treatment for the Ising Model, in Lecture Notes in Physics Vol. 54 p.189.
[105] Gallavotti G, Miracle-Solé S and Robinson D W 1967 Phys. Lett. 25A493
[106] Gallavotti G and Miracle-Solé S 1967 Commun. Math. Phys. 5 317
[107] Yang C N and Lee T D 1952 Phys. Rev. 87 404
[108] Lee T D and Yang C N 1952 Phys. Rev. 87 410
[109] Huang K 1963 Statistical Mechanics (New York: John Wiley & Sons Inc.) pp.321-326,Appendix C
[110] Editorial Group of the Department of Physics of Beijing University1987 Quantum Statistical Mechanics (Beijing: Beijing University Press) pp.90-93
[111] Saidi E H, Fassi-Fehri O and Bousmina M 2012 J. Math. Phys. 53 072304
[112] Klein D J and March N H 2008 Phys. Lett. A 372 5052
[113] Strecka J, Dely J and Canova L 2009 Physica A 388 2394
[114] March N H and Zhang Z D 2009 Phys. Lett. A 373 2075
[115] March N H and Zhang Z D 2009 Phys. Chem. Liquids 47 693
[116] March N H and Zhang Z D 2010 J. Math. Chem. 47 520
[117] March N H and Zhang Z D 2010 Phys. Chem. Liquids 48 279
[118] Zhang Z D and March N H 2010 Phys. Chem. Liquids 48 403
[119] Zhang Z D and March N H 2011 J. Math. Chem. 49 816
[120] Zhang Z D and March N H 2011 Phys. Chem. Liquids 49 270
[121] Zhang Z D and March N H 2011 Phys. Chem. Liquids 49 684
[122] Zhang Z D and March N H 2011 J. Math. Chem. 49 1283
[123] Zhang Z D and March N H 2012 J. Math. Chem. 50 920
[124] Kaupužs J 2012 Can. J. Phys. 90 373
[125] J Kaupužs, J Rimššans and R V N Melnik 2012 Commun. Comput. Phys. 14 355
[1] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[4] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[5] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[6] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[7] Design of an ultrafast electron diffractometer with multiple operation modes
Chun-Long Hu(胡春龙), Zhong Wang(王众), Yi-Jie Shi(石义杰), Chang Ye(叶昶), and Wen-Xi Liang(梁文锡). Chin. Phys. B, 2021, 30(9): 090701.
[8] Introducing the general condition for an operator in curved space to be unitary
Jafari Matehkolaee Mehdi. Chin. Phys. B, 2021, 30(8): 080301.
[9] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[10] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
[11] Geometric structure of N2Oq+ (q = 5, 6) studied by Ne8+ ion-induced Coulomb explosion imaging
Xi Zhao(赵曦), Xu Shan(单旭), Xiaolong Zhu(朱小龙), Lei Chen(陈磊), Zhenjie Shen(沈镇捷), Wentian Feng(冯文天), Dalong Guo(郭大龙), Dongmei Zhao(赵冬梅), Ruitian Zhang(张瑞田), Yong Gao(高永), Zhongkui Huang(黄忠魁), Shaofeng Zhang(张少锋), Xinwen Ma(马新文), and Xiangjun Chen(陈向军). Chin. Phys. B, 2021, 30(11): 113302.
[12] Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics
Da-Jian Zhang(张大剑), Qing-hai Wang(王清海), and Jiangbin Gong(龚江滨). Chin. Phys. B, 2021, 30(10): 100307.
[13] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[14] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[15] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
No Suggested Reading articles found!