Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030509    DOI: 10.1088/1674-1056/22/3/030509
GENERAL Prev   Next  

Chaotic dynamic behavior analysis and control for a financial risk system

Zhang Xiao-Dan (张晓丹)a, Liu Xiang-Dong (刘祥东)b, Zheng Yuan (郑媛)a, Liu Cheng (刘澄)b
a School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
b Dongling School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
Abstract  According to the risk management process of financial market, a financial risk dynamic system is constructed in this paper. Through analyzing the basic dynamic property, we obtain the conditions for stability and bifurcation of the system based on Hopf bifurcation theory of nonlinear dynamical systems. In order to make the system's chaos disappear, we select the feedback gain matrix to design a class of chaotic controller. Numerical simulations are performed to reveal the change process of financial market risk. It is shown that, when the parameter of risk transmission rate changes, the system gradually comes into chaos from the asymptotically stable state through bifurcation. Besides, the controller can control chaos effectively.
Keywords:  chaos attractor      Hopf bifurcation      financial risk      chaos feedback control  
Received:  28 January 2012      Revised:  20 November 2012      Accepted manuscript online: 
PACS:  05.45.Jn (High-dimensional chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  89.65.Gh (Economics; econophysics, financial markets, business and management)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 70271068).
Corresponding Authors:  Zhang Xiao-Dan     E-mail:  bkdzxd@163.com

Cite this article: 

Zhang Xiao-Dan (张晓丹), Liu Xiang-Dong (刘祥东), Zheng Yuan (郑媛), Liu Cheng (刘澄) Chaotic dynamic behavior analysis and control for a financial risk system 2013 Chin. Phys. B 22 030509

[1] Li T Y and York J A 1975 Amer. Math. Monthly. 82 985
[2] Chen P 1988 Syst. Dyna. Rev. 4 81
[3] Wang J, Chen Z and Yuan Z 2006 Chin. Phys. 15 1216
[4] Zheng Y and Zhang X D 2010 Chin. Phys. B 19 010505
[5] Min L Q, Zhang X D and Chen G R 2005 Int. Bifurc. Chaos 15 119
[6] Hommes C H 1993 Econ. Lett. 41 391
[7] Stutzer M J 1980 J. Econ. Dyna. Cont. 2 353
[8] Day R H 1982 Amer. Econ. Rev. 72 406
[9] Senguptaa J K and Zhenga Y 1995 Appl. Fina. Econ. 5 291
[10] Scheinkman J A and Lebaron B 1989 J. Busi. 62 311
[11] Hsieh D A 1991 J. Fina. 46 1839
[12] Barnett W A and Hinich M J 1992 Anna. Oper. Res. 37 1
[13] Barnett W A and Chen P 1988 Math. Coput. Modeling 10275
[14] Agiza H and Elsadany A 2004 Appl. Math. Comp. 149843
[15] Hu R 2012 Grey Syst.: Theo. Appl. 2 129
[16] Baumol W J and Wolff E N 1983 Scan. J. Econ. 85 147
[17] Feichtinger G and Kopel M 1993 Euro. J. Oper. Res. 68 145
[18] Wu H H and Lin X 2010 J. Comp. 2 79
[19] Lu S G 2006 Hainan Finance 1 15 (in Chinese)
[20] Burlando T 1994 Risk Mana. 41 54
[21] Zhou G H 2001 J. Zhejiang Univ. 31 84 (in Chinese)
[22] Qi G Y, Chen G R and Du S Z 2005 Phys. A 45 295
[23] Chen W C 2008 Chaos Soliton. Frac. 36 1305
[24] Dupoyet B, Fiebig H R and Musgrove D P 2011 Phys. A 390 3120
[25] Wen H M and Yao F G 2007 Chin. J. Mana. Sci. 15 286 (in chinese)
[26] Si G Q, Cao H and Zhang Y B 2011 Chin. Phys. B 20 010509
[27] Li N, Sun H Y and Zhang Q L 2012 Chin. Phys. B 21 010503
[28] Huang J J, Li C D, Zhang W and Wei P C 2012 Chin. Phys. B 21 090508
[29] Hegazi A, Agiza H N and El-Dessoky M M 2001 Chaos Soliton. Frac. 12 631
[30] Agiza H N 2002 Chaos Soliton. Frac. 13 341
[31] Hwang C C 1997 Int. J. Eng. Sci. 37 1893
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[3] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[4] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[5] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[6] Hopf bifurcation control of a Pan-like chaotic system
Liang Zhang(张良), JiaShi Tang(唐驾时), Qin Han(韩芩). Chin. Phys. B, 2018, 27(9): 094702.
[7] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[8] Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Wang Zhao-Long (王兆龙), Li Hai-Bin (李海滨). Chin. Phys. B, 2015, 24(1): 014501.
[9] Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Sun Bao-Ping (孙宝平), Zhang Wen-Ming (张文明). Chin. Phys. B, 2014, 23(9): 094501.
[10] Nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film-shaped memory alloy composite plate subjected to in-plane stochastic excitation
Zhu Zhi-Wen (竺致文), Zhang Qing-Xin (张庆昕), Xu Jia (许佳). Chin. Phys. B, 2014, 23(8): 088201.
[11] Synchronization transition of a coupled system composed of neurons with coexisting behaviors near a Hopf bifurcation
Jia Bing (贾冰). Chin. Phys. B, 2014, 23(5): 050510.
[12] Bifurcation diagram globally underpinning neuronal firing behaviors modified by SK conductance
Chen Meng-Jiao (陈梦娇), Ling Heng-Li (令恒莉), Liu Yi-Hui (刘一辉), Qu Shi-Xian (屈世显), Ren Wei (任维). Chin. Phys. B, 2014, 23(2): 028701.
[13] Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode
Zhang Wei-Ya (张玮亚), Li Yong-Li (李永丽), Chang Xiao-Yong (常晓勇), Wang Nan (王楠). Chin. Phys. B, 2013, 22(9): 098401.
[14] Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system
Xue Wei (薛薇), Qi Guo-Yuan (齐国元), Mu Jing-Jing (沐晶晶), Jia Hong-Yan (贾红艳), Guo Yan-Ling (郭彦岭). Chin. Phys. B, 2013, 22(8): 080504.
[15] Effects of switching frequency and leakage inductance on slow-scale stability in a voltage controlled flyback converter
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(12): 120504.
No Suggested Reading articles found!