Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120504    DOI: 10.1088/1674-1056/22/12/120504
GENERAL Prev   Next  

Effects of switching frequency and leakage inductance on slow-scale stability in a voltage controlled flyback converter

Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎)
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract  The effects of both the switching frequency and the leakage inductance on the slow-scale stability in a voltage controlled flyback converter are investigated in this paper. Firstly, the system description and its mathematical model are presented. Then, the improved averaged model, which covers both the switching frequency and the leakage inductance, is established, and the effects of these two parameters on the slow-scale stability in the system are analyzed. It is found that the occurrence of Hopf bifurcation in the system is the main reason for losing its slow-scale stability and both the switching frequency and the leakage inductance have an important effect on this slow-scale stability. Finally, the effectiveness of the improved averaged model and that of the corresponding theoretical analysis are confirmed by the simulation results and the experimental results.
Keywords:  flyback converter      slow-scale stability      improved averaged model      Hopf bifurcation  
Received:  13 February 2013      Revised:  06 May 2013      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  84.30.Jc (Power electronics; power supply circuits)  
  45.10.Hj (Perturbation and fractional calculus methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51007068), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20100201120028), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2012JQ7026), the Fundamental Research Funds for the Central Universities, China (Grant No. 2012jdgz09), and the Fund from the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE12303).
Corresponding Authors:  Wang Fa-Qiang     E-mail:  faqwang@mail.xjtu.edu.cn

Cite this article: 

Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎) Effects of switching frequency and leakage inductance on slow-scale stability in a voltage controlled flyback converter 2013 Chin. Phys. B 22 120504

[1] Lee M C, Lio J B, Chen D Y, Chen Y T and Wu Y P 1998 IEEE Trans. Ind. Electron. 45 236
[2] Chen T H, Lin W L and Liaw C M 1999 IEEE Trans. Aerospace Electron. Syst. 35 1230
[3] Telefus M, Shteynberg A, Ferdowsi M and Emadi A 2004 IEEE Trans. Power Electron. 19 757
[4] Suntio T 2006 IEEE Trans. Power Electron. 21 479
[5] Liang T J and Tseng K C 2005 IEE Proc. Electr. Power Appl. 152 217
[6] Murthy-Bellur D and Kazimierczuk M K 2011 Int. J. Circ. Theor. Appl. 39 1145
[7] Murthy-Bellur D and Kazimierczuk M K 2011 Int. J. Circ. Theor. Appl. 39 849
[8] Birca-Galateanu S 1987 IEEE Trans. Aerospace Electron. Syst. AES-23 146
[9] Hsieh F H, Lin K M and Su J H 2009 Proceedings of 4th IEEE Conference on Industrial Electronics and Applications, May 25–27, 2009, Xi’an, China, p. 166
[10] Xie F, Yang R and Zhang B 2011 IEEE Trans. Circ. Syst. I 58 2269
[11] Wang F Q and Ma X K 2011 Phys. Lett. A 375 1451
[12] El Aroudi A, Benadero L, Toribio E and Machiche S 2000 Int. J. Bifur. Chaos 10 359
[13] Maity S, Tripathy D, Bhattacharya T K and Banerjee S 2007 IEEE Trans. Circ. Syst. I 54 1120
[14] El Aroudi A, Benadero L, Toribio E and Olivar G 1999 IEEE Trans. Circ. Syst. I 46 1374
[15] Wang J P, Xu J P, Zhou G H, Mi C B and Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese)
[16] Ma W, Wang M Y and Nie H L 2011 Acta Phys. Sin. 60 100202 (in Chinese)
[17] Iu H H C, Tse C K, Pjevalica V and Lai Y M 2001 Int. J. Circ. Theor. Appl. 29 281
[18] Tse C K, Lai Y M and Iu H H C 2000 IEEE Trans. Circ. Syst. I 47 448
[19] Iu H H C and Tse C K 2003 IEEE Trans. Circ. Syst. I 50 679
[20] Chen Y F, Tse C K, Qiu S S, Lindenmuller L and Schwarz W 2008 IEEE Trans. Circ. Syst. I 55 3335
[21] Wong S C, Wu X Q and Tse C K 2008 IEEE Trans. Circ. Syst. Ⅱ 55 489
[22] Witulski A F 1995 IEEE Trans. Power Electron. 10 349
[23] Onoda S and Emadi A 2004 IEEE Trans. Veh. Technol. 53 390
[24] PSIM Version 9.0. Powersim Inc.
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[3] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[4] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[5] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[6] Hopf bifurcation control of a Pan-like chaotic system
Liang Zhang(张良), JiaShi Tang(唐驾时), Qin Han(韩芩). Chin. Phys. B, 2018, 27(9): 094702.
[7] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[8] Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Wang Zhao-Long (王兆龙), Li Hai-Bin (李海滨). Chin. Phys. B, 2015, 24(1): 014501.
[9] Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Sun Bao-Ping (孙宝平), Zhang Wen-Ming (张文明). Chin. Phys. B, 2014, 23(9): 094501.
[10] Nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film-shaped memory alloy composite plate subjected to in-plane stochastic excitation
Zhu Zhi-Wen (竺致文), Zhang Qing-Xin (张庆昕), Xu Jia (许佳). Chin. Phys. B, 2014, 23(8): 088201.
[11] Synchronization transition of a coupled system composed of neurons with coexisting behaviors near a Hopf bifurcation
Jia Bing (贾冰). Chin. Phys. B, 2014, 23(5): 050510.
[12] Bifurcation diagram globally underpinning neuronal firing behaviors modified by SK conductance
Chen Meng-Jiao (陈梦娇), Ling Heng-Li (令恒莉), Liu Yi-Hui (刘一辉), Qu Shi-Xian (屈世显), Ren Wei (任维). Chin. Phys. B, 2014, 23(2): 028701.
[13] Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode
Zhang Wei-Ya (张玮亚), Li Yong-Li (李永丽), Chang Xiao-Yong (常晓勇), Wang Nan (王楠). Chin. Phys. B, 2013, 22(9): 098401.
[14] Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system
Xue Wei (薛薇), Qi Guo-Yuan (齐国元), Mu Jing-Jing (沐晶晶), Jia Hong-Yan (贾红艳), Guo Yan-Ling (郭彦岭). Chin. Phys. B, 2013, 22(8): 080504.
[15] Chaotic dynamic behavior analysis and control for a financial risk system
Zhang Xiao-Dan (张晓丹), Liu Xiang-Dong (刘祥东), Zheng Yuan (郑媛), Liu Cheng (刘澄). Chin. Phys. B, 2013, 22(3): 030509.
No Suggested Reading articles found!