Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030508    DOI: 10.1088/1674-1056/22/3/030508
GENERAL Prev   Next  

Adaptive control of bifurcation and chaos in a time-delayed system

Li Ning (李宁)a, Yuan Hui-Qun (袁惠群)b, Sun Hai-Yi (孙海义)c, Zhang Qing-Ling (张庆灵)a
a Institute of Systems Science, Northeastern University, Shenyang 110819, China;
b Institute of Applied Mechanics, Northeastern University, Shenyang 110819, China;
c College of Science, Shenyang JianZhu University, Shenyang 110168, China
Abstract  In this paper, the stabilization of a continuous time-delayed system is considered. To control the bifurcation and chaos in a time-delayed system, a parameter perturbation control and a hybrid control are proposed. Then, to ensure the asymptotic stability of the system in the presence of unexpected system parameter changes, the adaptive control idea is introduced, i.e., the perturbation control parameter and the hybrid control parameter are automatically tuned according to the adaptation laws, respectively. The adaptation algorithms are constructed based on the Lyapunov–Krasovskii stability theorem. The adaptive parameter perturbation control and the adaptive hybrid control methods improve the corresponding constant control methods. They have the advantages of increased stability, adaptability to the changes of the system parameters, control cost saving, and simplicity. Numerical simulations for a well-known chaotic time-delayed system are performed to demonstrate the feasibility and superiority of the proposed control methods. Besides, comparison of the two adaptive control methods are made in an experimental study.
Keywords:  delay      parameter perturbation control      hybrid control      adaptive control  
Received:  11 July 2012      Revised:  18 August 2012      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10772043), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090042110003), and the Science Research Project of Education Department of Liaoning Province, China (Grant No. L2012208).
Corresponding Authors:  Yuan Hui-Qun     E-mail:  yuan_hq@163.com

Cite this article: 

Li Ning (李宁), Yuan Hui-Qun (袁惠群), Sun Hai-Yi (孙海义), Zhang Qing-Ling (张庆灵) Adaptive control of bifurcation and chaos in a time-delayed system 2013 Chin. Phys. B 22 030508

[1] Dugard L and Verriest E I 1998 Stability and Control of Time-Delay Systems (London: Springer)
[2] Gu K, Kharitonov V L and Chen J 2003 Stability of Time-Delay Systems (Boston: Birkhäuser)
[3] Mackey M C and Glass L 1977 Science 197 287
[4] Ye Z Y, Yang G and Deng C B 2011 Chin. Phys. B 20 010207
[5] Zhao H Y, Yu X H and Wang L 2012 Int. J. Bifurcat. Chaos 22 1250036
[6] Wang S L, Wang S L and Song X Y 2012 Nonlinear Dyn. 67 629
[7] Zhao H Y and Xie W 2011 Nonlinear Dyn. 63 345
[8] Balasubramaniam P, Kalpana M and Rakkiyappan R 2012 Chin. Phys. B 21 048402
[9] Yang J H and Liu X B 2012 Acta Phys. Sin. 61 010505 (in Chinese)
[10] Gong D W, Zhang H G and Wang Z S 2012 Chin. Phys. B 21 030204
[11] Yu P, Yuan Y and Xu J 2002 Commun. Nonlinear Sci. Numer. Simulat. 7 69
[12] Chen G and Yu X 1999 IEEE Trans. Circ. Sys. I 46 767
[13] Luo X S, Fang J Q, Kong L J and Weng J Q 2000 Acta Phys. Sin. 49 1423 (in Chinese)
[14] Peng J H, Tang J S, Yu D J, Hai W H and Yan J R 2003 Chin. Phys. 12 17
[15] Yang L, Liu Z and Mao J 2000 Phys. Rev. Lett. 84 67
[16] Yang L, Liu Z and Chen G 2002 Int. J. Bifurcat. Chaos 12 1411
[17] Luo X S, Chen G R, Wang B H and Fang J Q 2003 Chaos Soliton. Fract. 18 775
[18] Liu Z R and Chung K W 2005 Int. J. Bifurcat. Chaos 15 3895
[19] Jimenez-Triana A, Tang W K S and Chen G R 2010 IEEE Trans. Circ. Sys. II 57 305
[20] Wu Z M, Xie J Y, Fang Y Y and Xu Z Y 2007 Chaos Soliton. Fract. 32 104
[21] Kavitha A and Uma G 2010 J. Electr. Eng. Technol. 5 171
[22] Zhou Y F, Tse C K, Qiu S S and Chen J N 2005 Chin. Phys. 14 61
[23] Wang T S, Wang X Y and Wang M J 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 3367
[24] Zhang L P, Wang H N and Xu M 2011 Acta Phys. Sin. 60 010506 (in Chinese)
[25] Ding D W, Zhu J and Luo X S 2008 Chin. Phys. B 17 105
[26] Liu F, Guan Z H and Wang H 2008 Chin. Phys. B 17 2405
[27] Rezaie B and Motlagh M R J 2011 Nonlinear Dyn. 64 167
[28] Jiang M, Shena Y, Jian J and Liao X 2006 Phys. Lett. A 350 221
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[4] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[5] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[6] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[7] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[8] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[9] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[10] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[11] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[12] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[13] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[14] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[15] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
No Suggested Reading articles found!