Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110503    DOI: 10.1088/1674-1056/ab9ded
GENERAL Prev   Next  

Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations

Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷)
Institute of Modern Circuits and Intelligent Information, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  

Complexity and abundant dynamics may arise in locally-active systems only, in which locally-active elements are essential to amplify infinitesimal fluctuation signals and maintain oscillating. It has been recently found that some memristors may act as locally-active elements under suitable biasing. A number of important engineering applications would benefit from locally-active memristors. The aim of this paper is to show that locally-active memristor-based circuits can generate periodic and chaotic oscillations. To this end, we propose a non-volatile locally-active memristor, which has two asymptotically stable equilibrium points (or two non-volatile memristances) and globally-passive but locally-active characteristic. At an operating point in the locally-active region, a small-signal equivalent circuit is derived for describing the characteristics of the memristor near the operating point. By using the small-signal equivalent circuit, we show that the memristor possesses an edge of chaos in a voltage range, and that the memristor, when connected in series with an inductor, can oscillate about a locally-active operating point in the edge of chaos. And the oscillating frequency and the external inductance are determined by the small-signal admittance Y(iω). Furthermore, if the parasitic capacitor in parallel with the memristor is considered in the periodic oscillating circuit, the circuit generates chaotic oscillations.

Keywords:  memristor      chaos local activity      Hopf bifurcation  
Received:  22 April 2020      Revised:  07 June 2020      Accepted manuscript online:  18 June 2020
Fund: the National Natural Science Foundation of China (Grant No. 61771176).
Corresponding Authors:  Corresponding author. E-mail: wanggyi@163.com   

Cite this article: 

Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷) Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations 2020 Chin. Phys. B 29 110503

Fig. 1.  

(a) Pinched hysteresis loops driven by sinusoidal voltage with amplitude A = 10 V at f = 0.5 Hz, 2 Hz, 5 Hz, and 500 Hz, with m = 0 and initial state x(0) = 0.5; (b) time domain waveforms of input voltage (red) and output current (blue) at frequency f = 2 Hz.

Fig. 2.  

POP of locally-active memristor.

Fig. 3.  

(a) DC VI plot of memristor (b) zoomed DC VI plot near negative slope region.

Fig. 4.  

Small-signal equivalent circuit of memristor at operating point Q(X, V) under exciting voltage δ v.

Fig. 5.  

The pole-zero diagram of the memristor in the voltage range of −10 ≤ V ≤ 10.

Fig. 6.  

Frequency response and Nyquist plot of the locally-active memristor at voltage V = −8 V, showing (a) real part Re Y(iω, V) and imaginary Im Y(iω, V) part of frequency response, (b) zoomed Fig. 6(a) in range −200 rad/s ≤ ω ≤ 200 rad/s, and (c) Nyquist plot.

Fig. 7.  

Oscillating circuit composed of memristor operating in locally-active region.

Fig. 8.  

Trajectories of eigenvalues in range of −20 V ≤ V ≤ 20 V.

Fig. 9.  

Pole-zero diagrams of Yc(s, V) for (a) real part of pole p1, (b) real part of pole p2, (c) zoomed real part of poles p1 and p2 in the range of −10 V ≤ V ≤ 10 V, (d) imaginary part of poles p1 and p2, (e) the relationship between the real and imaginary parts of poles p1 and p2, in which the arrowheads indicate the movement direction of the pole as the voltage V increases.

Fig. 10.  

Pole diagrams of admittance Yc(s, V) with external inductance L in a range of 0 < L < 1 H, showing (a) real part of the poles, p1 and p2, and (b) imaginary part of the poles.

Fig. 11.  

Frequency response of admittance function Y(iω, V) with respect to ω, showing (a) real part curve of frequency response of memristor in a range of −100 rad/s ≤ ω ≤ 100 rad/s, and (b) Nyquist plot of memristor frequency response in a range of −1000 rad/s ≤ ω ≤ 1000 rad/s.

Fig. 12.  

Transient waveforms of state variable x and current iL with different DC voltages, where initial states are (x(0), iL(0)) = (0.1, −0.1) (a) DC voltage V = −8.1 V, and transient waveforms converge to stable equilibrium point Q0; (b) DC voltage V = −7.8 V, and the system oscillates to form a limit cycle; (c) DC voltage V = −5.5 V, and the system is in unstable state, diverging from initial state; (d) DC voltage V = −5.3 V, and the system is in unstable state, diverging from initial state; (e) DC voltage V = −5.2 V, and the system oscillates to form a limit cycle; (f) DC voltage V = −4.9 V, transient waveforms converge to stable equilibrium point ${Q}_{0}^{^{\prime} }$.

Fig. 13.  

Plots of the memristor determined by Eqs. (38) and (39): (a) $V=\mathop{v}\limits^\unicode{x2323}(X)$, (b) $I=\mathop{i}\limits^\unicode{x2323}(X)$, and (c) DC VI plot.

Fig. 14.  

Chaotic oscillator circuit based on locally-active memristor.

Fig. 15.  

Phase diagrams of this memristor-based chaotic oscillating circuit (a) xy plane, (b) yz plane, (c) xz plane, and (d) chaotic pinched hysteresis loops of the memristor.

Fig. 16.  

Time domain waveform of memristor state variable x, capacitor voltage vC, and inductor current iL.

Fig. 17.  

(a) Time domain waveforms and xyz phase diagrams with circuit parameters fixed at (a) (x0,y0, z0) = (4.5, 0.1, 0.1); (b) (x0, y0, z0) = (11, 0.1, 0.1), but the initial values changed.

Initial condition (4.5,0.1,0.1) (11,0.1,0.1)
Equilibrium point (1.2984,0,0) (11.8443,0,0)
Memductance negative positive
Memristor characteristics locally-active locally-passive
Eigenvalues λ1 = −6.4032 λ1 = −292.342
λ2 = 1.3996 + 4.6337i λ2 = −12.689
λ3 = 1.3996 − 4.6337i λ3 = − 0.080
Lyapunov exponent (0.201−0.010−5.910) (−0.113−12.630−31.280)
System status chaotic oscillation asymptotically stability
Table 1.  

Nonlinear dynamic characteristics of different initial conditions.

Fig. 18.  

(a) Lyapunov exponent (LE) spectrum and (b) bifurcation diagram varying with parameter a.

Fig. 19.  

Phase diagram changing with parameter a on the xy plane: (a) a = 0.8, (b) a = 1.2, (c) a = 1.793, and (d) a = 2.13.

Fig. 20.  

(a) Lyapunov exponent spectrum and (b) bifurcation diagram changing with parameter b.

[1]
Chua L 1971 IEEE Trans. Circuit Theory 18 507 DOI: 10.1109/TCT.1971.1083337
[2]
Chua L, Kang S M 1976 Proc. IEEE 64 209 DOI: 10.1109/PROC.1976.10092
[3]
Strukov D B, Snider G S, Stewart D R, Stanley Williams R 2008 Nature 453 80 DOI: 10.1038/nature06932
[4]
Yuan F, Wang G Y, Wang X 2016 Chaos 26 073107 DOI: 10.1063/1.4958296
[5]
Wang G Y, He J L, Yuan F, Peng C J 2013 Chin. Phys. Lett. 30 468 DOI: 10.1088/0256-307X/30/11/110506
[6]
Sah M P, Kim Chua L 2014 IEEE Circuits and Systems Magazine 14 12 DOI: 10.1109/MCAS.2013.2296414
[7]
Xie L, Haron M A B 2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) July 18–20, 2016 Beijing, China 85 https://ieeexplore.ieee.org/document/7568631
[8]
Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K, Strukov D B 2015 Nature 521 61 DOI: 10.1038/nature14441
[9]
Chuang H, Li Y X, Chen G R 2020 Chaos 30 043110 DOI: 10.1063/1.5129557
[10]
Chen L J, Zhou Y, Yang F Y, Zhong S Z, Zhang J W 2019 Nonlinear Dyn. 98 517 DOI: 10.1007/s11071-019-05209-w
[11]
Yuan F, Deng Y, Li Y X, Wang G Y 2019 Nonlinear Dyn. 96 389 DOI: 10.1007/s11071-019-04795-z
[12]
Li C L, Li Z Y, Feng W, Tong Y N, Du J R, Wei D Q 2019 Int. J. Electron. Commun. 110 152861 DOI: 10.1016/j.aeue.2019.152861
[13]
Chua L 2005 Int. J. Bifur. Chaos 15 3435 DOI: 10.1142/S0218127405014337
[14]
Mainzer K, Chua L 2013 The local activity principle: The cause of complexity and symmetric breaking London Imperial College 146 159
[15]
Mannan Z I, Choi H, Kim H 2016 Int. J. Bifur. Chaos 26 1630009 DOI: 10.1142/S0218127416300093
[16]
Muthuswamy B, Chua L 2010 Int. J. Bifur. Chaos 20 1567 DOI: 10.1142/S0218127410027076
[17]
Chua L 2015 Radio Engineering 24 319 DOI: 10.13164/re.2015.0319
[18]
Mannan Z I, Choi H, Rajamani V, Kim H, Chua L 2017 Int. J. Bifur. Chaos 27 1730011 DOI: 10.1142/S0218127417300117
[19]
Jin P P, Wang G Y, Lu H H C, Tyrone F 2017 IEEE Trans. Circuits & Systems II Express Briefs 65 246 DOI: 10.1109/TCSII.2017.2735448
[20]
Ying J J, Wang G Y, Dong Y J, Yu S M 2019 Int. J. Bifur. Chaos 29 1930030 DOI: 10.1142/S0218127419300301
[21]
Mannan Z I, Yang C J, Kim H 2018 IEEE Circuits and Systems Magazine 18 14 DOI: 10.1109/MCAS.2018.2821724
[22]
Mannan Z I, Yang C J, Adhikari S P, Kim H 2018 Complexity 2018 8405978 DOI: 10.1155/2018/8405978
[23]
Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Transactions on Circuits and Systems I: Regular Papers 66 2627 DOI: 10.1109/TCSI.8919
[24]
Chua L 2011 Appl. Phys. A 102 765 DOI: 10.1007/s00339-011-6264-9
[25]
Chua L 2014 Semi. Sci. Tech. 29 104001 DOI: 10.1088/0268-1242/29/10/104001
[26]
Chua L 2018 Appl. Phys. A 124 563 DOI: 10.1007/s00339-018-1971-0
[27]
Chua L, Sbitnev V, Kim H 2012 Int. J. Bifur. Chaos 22 1230011 DOI: 10.1142/S021812741230011X
[28]
Chua L, Desoer C A, Kuh E S 1987 Linear and Nonlinear Circuits New York McGraw-Hill
[29]
Chua L, Sbitnev V, Kim H 2012 Int. J. Bifur. Chaos 22 1250098 DOI: 10.1142/S0218127412500988
[30]
Dogaru R, Chua L 1998 Int. J. Bifur. Chaos 8 211 DOI: 10.1142/S0218127498000152
[31]
Sah M P, Mannan Z I, Kim H, Chua L 2015 Int. J. Bifur. Chaos 25 1530010 DOI: 10.1142/S0218127415300104
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[4] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[7] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[8] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[9] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[12] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[13] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[14] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[15] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
No Suggested Reading articles found!