Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 020503    DOI: 10.1088/1674-1056/22/2/020503
GENERAL Prev   Next  

Optimization of fin geometry in heat convection with entransy theory

Cheng Xue-Tao (程雪涛)a, Zhang Qin-Zhao (张勤昭)b, Xu Xiang-Hua (徐向华)a, Liang Xin-Gang (梁新刚)a
a Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, School of Aerospace, Tsinghua University, Beijing 100084, China;
b Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Abstract  The entransy theory developed in the recent years is used to optimize the aspect ratio of plate fin in heat convection. Based on a two-dimensional model, the theoretical analysis shows that the minimum thermal resistance defined with the concept of entransy dissipation corresponds to the maximum heat transfer rate when the temperature of the heating surface is fixed. On the other hand, when the heat flux of the heating surface is fixed, the minimum thermal resistance corresponds to the minimum average temperature of the heating surface. The entropy optimization is also given for the heat transfer processes. It is observed that none of the minimum entropy generation, the minimum entropy generation number, and the minimum revised entropy generation number always corresponds to the best heat transfer performance. In addition, the influence factors on the optimized aspect ratio of plate fin are also discussed. The optimized ratio decreases with the enhancement of heat convection, while it increases with fin thermal conductivity increasing.
Keywords:  entransy dissipation      thermal resistance      heat convection optimization      fin efficiency  
Received:  20 June 2012      Revised:  19 July 2012      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  44.27.+g (Forced convection)  
  44.05.+e (Analytical and numerical techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51106082) and the Tsinghua University Initiative Scientific Research Program.
Corresponding Authors:  Liang Xin-Gang     E-mail:  liangxg@tsinghua.edu.cn

Cite this article: 

Cheng Xue-Tao (程雪涛), Zhang Qin-Zhao (张勤昭), Xu Xiang-Hua (徐向华), Liang Xin-Gang (梁新刚) Optimization of fin geometry in heat convection with entransy theory 2013 Chin. Phys. B 22 020503

[1] Yuan F and Chen Q 2011 Energ. 36 5476
[2] Liu X B and Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese)
[3] Cheng R J and Ge H X 2010 Chin. Phys. B 19 090201
[4] Salem A M and Fathy R 2012 Chin. Phys. B 21 054701
[5] Cheng X T, Liang X G and Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese)
[6] Guo Z Y, Li D Y and Wang B X 1998 Int. J. Heat Mass Transfer 41 2221
[7] Guo Z Y 2001 Chin. Sci. Bull. 46 596
[8] Bejan A 1998 Advanced Engineering Thermodynamics (New York: Wiley)
[9] Guo Z Y, Zhu H Y and Liang X G 2007 Int. J. Heat Mass Transfer 50 2545
[10] Shah R K and Skiepko T 2004 J. Heat Transfer 126 994
[11] Cheng X T, Liang X G and Guo Z Y 2011 Chin. Sci. Bull. 56 847
[12] Zhu H Y, Chen Z J and Guo Z Y 2007 Prog. Nat. Sci. 17 1692 (in Chinese)
[13] Xiao Q H, Chen L G and Sun F R 2011 Chin. Sci. Bull. 56 102
[14] Cheng X T, Xu X H and Liang X G 2009 Sci. China E: Tech. Sci. 52 2937
[15] Cheng X T and Liang X G 2011 Int. J. Heat Mass Transfer 54 269
[16] Cheng X T, Xu X H and Liang X G 2011 Sci. China E: Tech. Sci. 54 2446
[17] Guo Z Y, Liu X B, Tao W Q and Guo Z Y 2010 Int. J. Heat Mass Transfer 53 2877
[18] Guo J F, Xu M T and Chen L 2011 Chin. Sci. Bull. 56 2071
[19] Cheng X T, Xu X H and Liang X G 2011 Sci. China: Tech. Sci. 54 964
[20] Qian X D and Li Z X 2011 Int. J. Therm. Sci. 50 608
[21] Hsiao K L 2010 J. Therm. Sci. 19 337
[22] Oyakawa K, Didarul I M and Yaga M 2006 J. Therm. Sci. 15 145
[23] Kim M H and Bullard C W 2002 Int. J. Refrigeration 25 390
[24] Mertol A 1993 ASME J. Electronic Packaging 115 440
[25] Poulikakos D and Bejan A 1982 J. Heat Transfer 104 616
[26] Zeng D L, Ao Y, Zhang X M and Liu C 2002 Engineering Thermodynamics (Beijing: High Eduction Press) (in Chinese)
[27] Cheng X G, Meng J A and Guo Z Y 2005 J. Eng. Thermophys. 26 1034 (in Chinese)
[28] Hesselgreaves J E 2000 Int. J. Heat Mass Transfer 43 4189
[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout
Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪). Chin. Phys. B, 2019, 28(9): 098502.
[3] Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies
Yang Hong(洪扬), Jingchao Zhang(张景超), Xiao Cheng Zeng(曾晓成). Chin. Phys. B, 2018, 27(3): 036501.
[4] Accomplishment and challenge of materials database toward big data
Yibin Xu(徐一斌). Chin. Phys. B, 2018, 27(11): 118901.
[5] Analyses of an air conditioning system with entropy generation minimization and entransy theory
Yan-Qiu Wu(吴艳秋), Li Cai(蔡黎), Hong-Juan Wu(吴鸿娟). Chin. Phys. B, 2016, 25(6): 060507.
[6] Transient thermal analysis as measurement method for IC package structural integrity
Alexander Hanß, Maximilian Schmid, E Liu, Gordon Elger. Chin. Phys. B, 2015, 24(6): 068105.
[7] Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire
Zheng Kun (郑鲲), Zhu Jie (祝捷), Ma Yong-Mei (马永梅), Tang Da-Wei (唐大伟), Wang Fo-Song (王佛松). Chin. Phys. B, 2014, 23(10): 107307.
[8] Heat transport in coupled inhomogeneous chains
Hu Tao (胡涛), Bai Meng (白萌), Hu Ke (胡柯), Tang Yi (唐翌). Chin. Phys. B, 2011, 20(6): 060508.
[9] Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors
Jin Dong-Yue(金冬月), Zhang Wan-Rong(张万荣), Chen Liang(陈亮), Fu Qiang(付强), Xiao Ying(肖盈), Wang Ren-Qing(王任卿), and Zhao Xin(赵昕). Chin. Phys. B, 2011, 20(6): 064401.
[10] Measurements of electron–phonon coupling factor and interfacial thermal resistance of metallic nano-films using a transient thermoreflectance technique
Wang Hai-Dong(王海东), Ma Wei-Gang(马维刚), Guo Zeng-Yuan(过增元), Zhang Xing(张兴), and Wang Wei(王玮) . Chin. Phys. B, 2011, 20(4): 040701.
No Suggested Reading articles found!