Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 060507    DOI: 10.1088/1674-1056/25/6/060507
GENERAL Prev   Next  

Analyses of an air conditioning system with entropy generation minimization and entransy theory

Yan-Qiu Wu(吴艳秋), Li Cai(蔡黎), Hong-Juan Wu(吴鸿娟)
Chongqing Three Gorges University, Chongqing 404100, China
Abstract  

In this paper, based on the generalized heat transfer law, an air conditioning system is analyzed with the entropy generation minimization and the entransy theory. Taking the coefficient of performance (denoted as COP) and heat flow rate Qout which is released into the room as the optimization objectives, we discuss the applicabilities of the entropy generation minimization and entransy theory to the optimizations. Five numerical cases are presented. Combining the numerical results and theoretical analyses, we can conclude that the optimization applicabilities of the two theories are conditional. If Qout is the optimization objective, larger entransy increase rate always leads to larger Qout, while smaller entropy generation rate does not. If we take COP as the optimization objective, neither the entropy generation minimization nor the concept of entransy increase is always applicable. Furthermore, we find that the concept of entransy dissipation is not applicable for the discussed cases.

Keywords:  entropy generation      entransy increase      entransy dissipation      optimization analyses      finite time thermodynamics      air conditioning system  
Received:  24 October 2015      Revised:  15 February 2016      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: 

Project supported by the Youth Programs of Chongqing Three Gorges University, China (Grant No. 13QN18).

Corresponding Authors:  Yan-Qiu Wu     E-mail:  wuyanqiu0516@126.com

Cite this article: 

Yan-Qiu Wu(吴艳秋), Li Cai(蔡黎), Hong-Juan Wu(吴鸿娟) Analyses of an air conditioning system with entropy generation minimization and entransy theory 2016 Chin. Phys. B 25 060507

[1] Wang H and Wu G X 2013 Chin. Phys. B 22 087501
[2] Cheng X T and Liang X G 2015 Chin. Phys. B 24 060510
[3] Wang W H, Cheng X T and Liang X G 2013 Chin. Phys. B 22 110506
[4] Cheng X T, Zhang Q Z, Xu X H and Liang X G 2013 Chin. Phys. B 22 020503
[5] Zhao X L, Fu L and Zhang S G 2011 Energy Convers. Manage 52 494
[6] Chen L G, Feng H and Sun F R 2011 J. Energy Institute 84 105
[7] Bi Y, Chen L G and Sun F R 2009 Int. J. Exergy 6 550
[8] Cheng X T and Liang X G 2013 Chin. Sci Bull. 58 4696
[9] Li J, Chen L G, Ge Y L and Sun F R 2013 Acta Phys. Sin. 62 130501 (in Chinese)
[10] Cheng X T and Liang X G 2014 Energy Convers. Manage 80 238
[11] Myat A, Thu K and Kim Y D 2011 Appl. Therm. Engineering 31 2405
[12] Cheng X T and Liang X G 2013 Chin. Phys. B 22 010508
[13] Adavbiele A S 2010 Int. J. Energy Research Africa 1 67
[14] Chen L G, Wu C H and Sun F R 1999 J. Non-Equil. Thermody. 24 327
[15] Wu C H, Chen L G and Chen J C 1999 Recent Advances in Finite Time Thermodynamics (New York: Nova Science Publishers)
[16] Chen L G and Sun F R 2004 Advances in Finite time thermodynamics: Analysis and Optimization (New York: Nova Science Publishers)
[17] Myat A, Thu K and Kim Y D 2011 Appl. Thermal Eng. 31 2405
[18] Chen L G, Feng H and Sun F R 2011 J. Energy Institute 84 105
[19] Cheng X T and Liang X G 2013 Energy Buildings 67 387
[20] Klein S A and Reindl D T 1998 J. Energy Resources Technology 120 172
[21] Guo Z Y, Zhu H Y and Liang X G 2007 Int. J. Heat Mass Transfer 50 2545
[22] Cheng X T and Liang X G 2011 Int. J. Heat Mass Transfer 54 269
[23] Cheng X T, Zhang Q Z and Liang X G 2012 Appl. Thermal Eng. 38 31
[24] Cheng X T and Liang X G 2012 Energy Convers. Manage 58 163
[25] Chen L G, Xiao Q H, Xie Z H and Sun F R 2012 Int. Comm. Heat. Mass Transfer 39 1556
[26] Chen L G, Feng H J, Xie Z H and Sun F R 2013 Int. J. Heat Mass Transfer 67 704
[27] Chen L G, Xiao Q H, Xie Z H and Sun F R 2013 Int. J. Heat Mass Transfer 67 506
[28] Chen L G, Wei S H and Sun F R 2014 Int. J. Low-Carbon Tech. 9 20
[29] Feng H J, Chen L G and Sun F R 2012 Sci. China: Tech. Sci. 55 779
[30] Feng H J, Chen L G, Xie Z H and Sun F R 2014 Sci. China: Tech. Sci. 57 784
[31] Feng H J, Chen L G, Xie Z H and Sun F R 2014 Chin. Sci. Bull. 59 2470
[32] Liu W, Liu Z C, Jia H, Fana A W and Nakayama A 2011 Int. J. Heat Mass Transfer 54 3049
[33] Cheng X T and Liang X G 2012 Energy 44 964
[34] Cheng X T, Chen Q, Hu G J and Liang X G 2013 Int. J. Heat Mass Transfer 60 180
[35] Açıkkalp E 2014 Energy Convers. Manage 86 792
[36] Hu G J, Cao B Y and Guo Z Y 2011 Chin. Sci. Bull. 56 2974
[37] Cheng X T and Liang X G 2014 Chin. Sci. Bull. 59 5309
[38] Cheng X T, Liang X G and Guo Z Y 2011 Chin. Sci. Bull. 56 847
[39] Xia S J, Chen L G and Sun F R 2010 Appl. Math. Model. 34 2242
[40] Chen L G 2012 Chin. Sci. Bull. 57 4404
[41] Chen L G 2014 Sci. China: Tech. Sci. 57 2305
[42] Feng H J, Chen L G, Xie Z H and Sun F R 2015 Sci. China: Tech. Sci. 58 1084
[43] Feng H J, Chen L G, Xie Z H and Sun F R 2015 Int. J. Heat Mass Transfer 84 848
[44] Feng H J, Chen L G, Xie Z H and Sun F R 2015 Int. J. Heat Mass Transfer 89 24
[45] Yang A B, Chen L G, Xia S J and Sun F R 2014 Chin. Sci. Bull. 59 2031
[46] Zhu Y, Hu Z, Zhou Y, Jiang L and Yu L 2014 Energy Convers. Manage 88 267
[47] Li T, Fu W and Zhu J 2014 Energy 72 561
[48] Kim K H and Kim K 2015 Int. J. Heat Mass Transfer 84 80
[49] Bejan A 2014 ASME J. Heat Transfer 136 055501
[50] Oliveira S R and Milanez L F. 2014 Int. J. Heat Mass Transfer 79 518
[51] Wu Y Q 2015 Chin. Phys. B 24 070506
[52] Cheng X T and Liang X G 2013 Energy Convers. Manage 73 121
[53] Chen LG, Li J and Sun F R 2008 Appl. Energy 85 52
[54] Xia S J, Chen L G and Sun F R 2008 J. Therm. Sci. Tech. 7 226
[55] Cheng X T, Wang W H and Liang X G 2012 Sci. China: Tech. Sci. 55 2847
[56] Cheng X T and Liang X G 2014 Energy Convers. Manage 87 1052
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Role of entropy generation minimization in thermal optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505.
[3] Output power analyses of an endoreversible Carnot heat engine with irreversible heat transfer processes based on generalized heat transfer law
Wu Yan-Qiu (吴艳秋). Chin. Phys. B, 2015, 24(7): 070506.
[4] Optimization of combined endoreversible Carnot heat engines with different objectives
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2015, 24(6): 060510.
[5] Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 080509.
[6] A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization
Zhou Bing (周兵), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 084401.
[7] Optimization of fin geometry in heat convection with entransy theory
Cheng Xue-Tao (程雪涛), Zhang Qin-Zhao (张勤昭), Xu Xiang-Hua (徐向华), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(2): 020503.
[8] Analyses of the endoreversible Carnot cycle with entropy theory and entransy theory
Wang Wen-Hua (王文华), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(11): 110506.
[9] Applicability of minimum entropy generation methodto optimizing thermodynamic cycles
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(1): 010508.
No Suggested Reading articles found!