Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 124701    DOI: 10.1088/1674-1056/22/12/124701

Effects of transpiration on unsteady MHD flow of an upper convected Maxwell (UCM) fluid passing through a stretching surface in the presence of a first order chemical reaction

Swati Mukhopadhyaya, M. Golam Arifb, M. Wazed Ali Pkc
a Department of Mathematics, The University of Burdwan, Burdwan-713104, W.B., India;
b Institute of Business Administration, University of Rajshahi, Rajshahi-6205, Bangladesh;
c Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh
Abstract  The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constructive/destructive chemical reaction. The upper-convected Maxwell (UCM) model is used here to characterize the non-Newtonian behavior of the fluid. Using similarity solutions, the governing nonlinear partial differential equations are transformed into ordinary ones and are then solved numerically by the shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. The fluid velocity initially decreases as the unsteadiness parameter increases and the concentration decreases significantly due to the increase in the unsteadiness. The effect of increasing values of transpiration (suction) and the Maxwell parameter is to suppress the velocity field; however, the concentration is enhanced as transpiration (suction) and the Maxwell parameter increase. Also, it is found that the fluid velocity decreases as the magnetic parameter increases; however, the concentration increases in this case.
Keywords:  unsteady flow      MHD      upper convected Maxwell fluid      stretching surface transpiration      chemical reaction  
Received:  28 January 2013      Revised:  11 April 2013      Accepted manuscript online: 
PACS:  47.15.Cb (Laminar boundary layers)  
  47.70.Fw (Chemically reactive flows)  
  47.35.Tv (Magnetohydrodynamic waves)  
Fund: One of the authors (S.M.) was financially supported by UGC New Delhi, India through the Special Assistance Programme DSA Phase-1.
Corresponding Authors:  Swati Mukhopadhyay     E-mail:

Cite this article: 

Swati Mukhopadhyay, M. Golam Arif, M. Wazed Ali Pk Effects of transpiration on unsteady MHD flow of an upper convected Maxwell (UCM) fluid passing through a stretching surface in the presence of a first order chemical reaction 2013 Chin. Phys. B 22 124701

[1] Abel M S and Mahesha N 2008 Appl. Math. Model. 32 1965
[2] Ishak A, Nazar R and Pop I 2008 Heat Mass Transfer 44 921
[3] Gupta P S and Gupta A S 1977 Can. J. Chem. Eng. 55 744
[4] Vleggaar J 1977 Chem. Eng. Sci. 32 1517
[5] Dutta B K, Roy P and Gupta A S 1985 Int. Commun. Heat Mass Transfer 12 89
[6] Crane L J 1970 ZAMP 21 645
[7] Liu I C and Andersson H I 2008 Int. J. Thermal Sci. 47 766
[8] Mukhopadhyay S and Gorla R S R 2012 J. Naval Arch. Marine Engng. 9 123
[9] Hassanien I A 1996 Appl. Model. 20 779
[10] Sadeghy K and Sharifi M 2004 Int. J. Nonlinear Mech. 39 1265
[11] Serdar B and Salih Dokuz M 2006 Int. J. Engng. Sci. 44 49
[12] Haroun M H 2007 Commun. Nonlinear Sci. Numer. Simul. 12 1464
[13] Siddiqui A M, Zeb A, Ghori Q K and Benharbit A M 2008 Chaos, Solitons and Fractals 36 182
[14] Abel M S, Sanjayan E and Nandeppanavar M M 2008 Commun. Nonlinear Sci. Numer. Simul. 13 1808
[15] Sajid M, Ahmad I, Hayat T and Ayub M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 96
[16] Heyhat M M and Khabazi N 2010 Proc. IMechE Part C: J. Mech. Eng. Sci. 225 909, DOI:10.1243/09544062JMES2245
[17] Mukhopadhyay S 2012 Chin. Phys. Lett. 29 054703
[18] Alim M A, Rahman M M and Karim M M 2008 J. Naval Arch. Marine Eng. DOI: 10.3329/jname.v5i1.1868
[19] Hayat T, Abbas Z and Sajid M 2006 Phys. Lett. A 358 396
[20] Hayat T, Fetecau C and Sajid M 2008 Phys. Lett. A 372 1639
[21] Kumaran V, Banerjee A K, Kumar A V and Vajravelu K 2008 Appl. Math. Comput. 210 26
[22] Ishak A, Nazar R and Pop I 2009 Chem. Engng. J. 148 63
[23] Chaudhary M A and Merkin J H 1993 J. Engng. Math. 27 265
[24] Hayat T, Awais M, Qasim M and Hendi A A 2011 Int. J. Heat Mass Transfer 54 3777
[25] Andersson H I, Hansen O R and Holmedal B 1994 Int. J. Heat Mass Transfer 37 659
[26] Kendoush A A 1998 Chem. Engng. Process. 37 223
[27] Takhar H S, Chamkha A J and Nath G 2000 Int. J. Engng. Sci. 38 1303
[28] Liu I C 2005 Int. Commun. Heat Mass Transfer 32 1075
[29] Akyilidiz F T, Bellout H and Vajravelu K 2006 J. Math. Anal. Appl. 320 322
[30] Cortell R 2007 Chem. Eng. Process.: Process Intens. 46 982
[31] Mukhopadhyay S and Bhattacharyya K 2012 J. Egyptian Math. Soc. (in press),
[32] Bhattacharyya K, Mukhopadhyay S and Layek G C 2013 Chem. Engng. Commun. 200 1
[33] Andersson H I, Aarseth J B and Dandapat B S 2000 Int. J. Heat Mass Transfer 43 69
[34] Dandapat B S, Santra B and Andersson H I 2003 Int. J. Heat Mass Transfer 46 3009
[35] Dandapat B S, Santra B and Vajravelu K 2007 Int. J. Heat Mass Transfer 50 991
[36] Elbashbeshy E M A and Bazid M A A 2004 Heat Mass Transfer 41 1
[37] Sharidan S, Mahmood T and Pop I 2006 Int. J. Appl. Mech. Eng. 11 647
[38] Ali M E and Magyari E 2007 Int. J. Heat Mass Transfer 50 188
[39] Tsai R, Huang K H and Huang J S 2008 Int. Commun. Heat Mass Transfer 35 1340
[40] Chamkha A J, Aly A M and Mansour M A 2010 Chem. Eng. Commun. 197 846
[41] Abd El-Aziz M 2010 Chem. Eng. Commn. 197 1261
[42] Mukhopadhyay S 2009 Int. J. Heat Mass Transfer 52 3261
[43] Mukhopadhyay S 2010 Chin. Phys. Lett. 27 124401
[44] Mukhopadhyay S 2011 Nucl. Eng. Des. 241 2660
[45] Bhattacharyya K, Mukhopadhyay S and Layek G C 2011 Chin. Phys. Lett. 28 094702
[46] Midya C 2012 Chin. Phys. Lett. 29 014701
[47] Pahlavan A A and Sadeghy K 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1355
[48] Andersson H I, Bech K H and Dandapat B S 1992 Int. J. Nonlinear Mech. 27 929
[49] Prasad K V, Sujatha A, Vajravelu K and Pop I 2011 Meccanica DOI:10.1007/s11012-011-9526-x
[50] Mukhopadhyay S 2009 Int. J. Heat Mass Transfer 52 5213
[51] Mukhopadhyay S 2011 Nucl. Eng. Design 241 4835
[52] Sadeghy K, Hajibeygi H and Taghavi S M 2006 Int. J. Nonlinear Mech. 41 1242
[53] Abel M S, Tawade J V and Nandeppanavar M M 2011 Meccanica DOI:10.1007/s11012-011-9448-7
[54] Mukhopadhyay S and Vajravelu K 2012 ASME J. Appl. Mech.
[1] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[2] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[3] Effect of patterned hydrodynamic slip on electromagnetohydrodynamic flow in parallel plate microchannel
Chun-Hong Yang(杨春红) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2020, 29(11): 114101.
[4] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[5] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[6] Analytical studies on the evolution processes of rarefied deuterium plasma shell Z-pinch by PIC and MHD simulations
Cheng Ning(宁成), Xiao-Qiang Zhang(张小强), Yang Zhang(张扬), Shun-Kai Sun(孙顺凯), Chuang Xue(薛创), Zhi-Xing Feng(丰志兴), Bai-Wen Li(李百文). Chin. Phys. B, 2018, 27(2): 025207.
[7] Laser-induced fabrication of highly branched CuS nanocrystals with excellent near-infrared absorption properties
Ruyu Yang(杨汝雨), Zhongyi Zhang(张中义), Linlin Xu(徐林林), Shuang Li(李爽), Yang Jiao(焦扬), Hua Zhang(张华), Ming Chen(陈明). Chin. Phys. B, 2017, 26(7): 076102.
[8] A statistical model for predicting thermal chemical reaction rate
Lin Zheng-Zhe (林正喆), Li Wang-Yao (李王尧), Ning Xi-Jing (宁西京). Chin. Phys. B, 2014, 23(5): 050501.
[9] MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions
T. Hayat, M. Imtiaz, A. Alsaedi, R. Mansoor. Chin. Phys. B, 2014, 23(5): 054701.
[10] Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid
Sadegh Khalili, Saeed Dinarvand, Reza Hosseini, Hossein Tamim, Ioan Pop. Chin. Phys. B, 2014, 23(4): 048203.
[11] The application of reed-vibration mechanical spectroscopy for liquids to detect chemical reactions of an acrylic structural adhesive
Wei Lai (卫来), Zhou Heng-Wei (周恒为), Zhang Li (张丽), Huang Yi-Neng (黄以能). Chin. Phys. B, 2013, 22(9): 096201.
[12] Effects of thermal radiation on Casson fluid flow and heat transfer over an unsteady stretching surface subjected to suction/blowing
Swati Mukhopadhyay. Chin. Phys. B, 2013, 22(11): 114702.
[13] Time-dependent density functional theoretical studies on the photo-induced dynamics of an HCl molecule encapsulated in C60 under femtosecond laser pulses
Liu Dan-Dan (刘丹丹), Zhang Hong (张红). Chin. Phys. B, 2013, 22(10): 103103.
[14] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[15] Photochemical kinetics for holographic grating formation in phenanthrenequinone doped poly (methyl methacrylate) photopolymer
Wang Jian(王健), Sun Xiu-Dong(孙秀冬), Luo Su-Hua(骆素华), Jiang Yong-Yuan(姜永远), and Meng Qing-Xin(孟庆鑫). Chin. Phys. B, 2009, 18(10): 4326-4332.
No Suggested Reading articles found!