Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 124601    DOI: 10.1088/1674-1056/22/12/124601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection

Wang Chi (王驰), Zhou Yu-Qiu (周瑜秋), Shen Gao-Wei (沈高炜), Wu Wen-Wen (吴文雯), Ding Wei (丁卫)
Department of Precision Mechanical Engineering, Shanghai University, Shanghai 200072, China
Abstract  The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the “soil-mine” system could be equivalent to a damping “mass-spring” resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil–mine system could be investigated by changing the parameter setup in a flexible manner.
Keywords:  acoustic mine detection      acoustic–seismic coupling      resonance model  
Received:  23 February 2013      Revised:  19 April 2013      Accepted manuscript online: 
PACS:  46.40.-f (Vibrations and mechanical waves)  
  46.40.Ff (Resonance, damping, and dynamic stability)  
  43.20.+g (General linear acoustics)  
  43.40.+s (Structural acoustics and vibration)  
Fund: Project supported, in part, by the National Natural Science Foundation of China (Grant No. 41104065), the "Chen Guang" Program of Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China (Grant No. 12CG047), the Scientific Research Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 13YZ022), and the State Key Laboratory of Precision Measuring Technology and Instruments, China.
Corresponding Authors:  Wang Chi     E-mail:  wangchi@shu.edu.cn

Cite this article: 

Wang Chi (王驰), Zhou Yu-Qiu (周瑜秋), Shen Gao-Wei (沈高炜), Wu Wen-Wen (吴文雯), Ding Wei (丁卫) Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection 2013 Chin. Phys. B 22 124601

[1] Sabatier J M and Xiang N 2001 IEEE Trans. Geosci. Remote Sensing 39 1146
[2] Xiang N and Sabatier J M 2003 J. Acoust. Soc. Am. 113 1333
[3] Donskoy D, Reznik A, Zagrai A and Ekimov A 2005 J. Acoust. Soc. Am. 117 690
[4] Donskoy D 2008 J. Acoust. Soc. Am. 123 3042
[5] Yu S H, Gandhe A, Witten T R and Mehra R K 2002 Proceedings of SPIE 4742: Detection and Remediation Technologies for Mines and Minelike Targets VⅡ, April 1, 2002, Orlando, Florida, USA, p. 701
[6] Zagrai A, Donskoy D and Ekimov A 2005 J. Acoust. Soc. Am. 118 3619
[7] Wang C, Liu Z G, Li X F, Sun F and Zhang G X 2008 Acta Acustica 33 354 (in Chinese)
[8] Wang C, Li X F, Fu J, Li H Y, Liang G Q and Zhang G X 2008 Opt. Precision Eng. 16 1716 (in Chinese)
[9] Wang C, Yu Y J, Li X F and Liang G Q 2010 Acta Phys. Sin. 59 6319 (in Chinese)
[10] Khan U S, Al-Nuaimy W and El-Samie F E A 2010 J. Vis. Commun. Image R. 21 731
[11] Zabolotskaya E A, Llinskii Y A, Hay T A and Hamilton M F 2012 J. Acoust. Soc. Am. 131 1831
[12] Lancranjan I I, Miclos S, Savastru D, Savastru R and Opran C 2012 Proceedings of SPIE 8433: Laser Sources and Applications, April 16, 2012, Brussels, Belgium, article id. 843315
[13] Mao X, Li G Q, Wang C and Ding W 2012 Prz. Elektrotechniczn 88 162
[14] Biot M A 1956 J. Acoust. Soc. Am. 28 168
[15] Biot M A 1956 J. Acoust. Soc. Am. 28 179
[16] Sabatier J M, Bass H E, Bolen L N, Attenborough K and Sastry V V S S 1986 J. Acoust. Soc. Am. 79 1345
[17] Sabatier J M, Bass H E and Bolen L N 1986 J. Acoust. Soc. Am. 80 646
[18] Robert W H and Kenneth D R 2005 Linc. Lab. J. 15 3
[19] Donskoy D, Ekimov A, Sedunov N and Tsionskiy M 2002 J. Acoust. Soc. Am. 111 2705
[20] Liu X B, Zhang J R and Li P 2012 Chin. Phys. B 21 054301
[21] Huang B, Zhang Y L, Zhang D and Gong X F 2010 Chin. Phys. B 19 054302
[22] Wu D, Tao C, Liu X J and Wang X D 2012 Chin. Phys. B 21 014301
[23] Zheng H P, Jiang Y M, Peng Z and Fu L P 2012 Acta Phys. Sin. 61 214502 (in Chinese)
[24] Zhang Q, Li Y C, Liu R, Jiang Y M and Hou M Y 2012 Acta Phys. Sin. 61 234501 (in Chinese)
[25] Jian X H, Cui Y Y, Xiang Y J and Han Z L 2012 Acta Phys. Sin. 61 217801 (in Chinese)
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
[3] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍)†, Yi-Nuo Liu(刘一诺), and Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[4] Aerodynamic measurement of a large aircraft modelin hypersonic flow
Bao-Qing Meng(孟宝清), Gui-Lai Han(韩桂来), De-Liang Zhang(张德良), Zong-Lin Jiang(姜宗林). Chin. Phys. B, 2017, 26(11): 114702.
[5] An acoustic bending waveguide designed by anisotropic density-near-zero metamaterial
Yang-Yang Wang(王洋洋), Er-Liang Ding(丁二亮), Xiao-Zhou Liu(刘晓宙), Xiu-Fen Gong(龚秀芬). Chin. Phys. B, 2016, 25(12): 124305.
[6] Tunable acoustic radiation pattern assisted by effective impedance boundary
Feng Qian(钱 枫), Li Quan(全力), Li-Wei Wang(王力维), Xiao-Zhou Liu (刘晓宙), Xiu-Fen Gong(龚秀芬). Chin. Phys. B, 2016, 25(2): 024301.
[7] A new model for film bulk acoustic wave resonators
Li Yu-Jin (李玉金), Yuan Xiu-Hua (元秀华). Chin. Phys. B, 2014, 23(11): 114601.
[8] Polarization properties in prism laser gyro with mechanical dither bias
Yao Cheng-Kang (姚呈康), Zeng Xiao-Dong (曾晓东), Cao Chang-Qing (曹长庆). Chin. Phys. B, 2012, 21(12): 124206.
[9] Modelling of spall damage in ductile materials and its application to the simulation of plate impact on copper
Zhang Feng-Guo (张凤国), Zhou Hong-Qiang (周洪强), Hu Jun (胡军), Shao Jian-Li (邵建立), Zhang Guang-Ca (张广财), Hong Tao (洪滔), He Bin (何斌). Chin. Phys. B, 2012, 21(9): 094601.
[10] Nonlinearity and periodic solution of a standard-beam balance oscillation system
Li Shi-Song(李世松), Lan Jiang(兰江), Han Bing(韩冰), Tan Hong(谭红), and Li Zheng-Kun(李正坤) . Chin. Phys. B, 2012, 21(6): 064601.
[11] Acoustic longitudinal mode coupling in w-shaped Al/Ge Co-doped fibre
Li Hong-Liang(李宏亮), Zhang Wei(张巍), Huang Yi-Dong(黄翊东), and Peng Jiang-De(彭江得) . Chin. Phys. B, 2011, 20(10): 104211.
[12] Coupled flexural-torsional vibration band gap in periodic beam including warping effect
Fang Jian-Yu(方剑宇), Yu Dian-Long(郁殿龙), Han Xiao-Yun(韩小云), and Cai Li(蔡力). Chin. Phys. B, 2009, 18(4): 1316-1321.
[13] Open loop control of vortex-induced vibration of a circular cylinder
Chen Zhi-Hua(陈志华), Fan Bao-Chun(范宝春), Zhou Ben-Mou(周本谋), and Li Hong-Zhi(李鸿志). Chin. Phys. B, 2007, 16(4): 1077-1083.
[14] Doubly coupled vibration band gaps in periodic thin-walled open cross-section beams
Yu Dian-Long (郁殿龙), Liu Yao-Zong (刘耀宗), Qiu Jing (邱静), Wang Gang (王刚), Wen Ji-Hong (温激鸿). Chin. Phys. B, 2005, 14(8): 1501-1506.
[15] RESEARCH ON VIBRATION MODES OF THE CHINESE CHIME STONE
Cheng Jian-zheng (程建政), Zhang De-jun (张德俊), Lan Cong-qing (兰从庆), Ye Chao-hui (叶朝辉). Chin. Phys. B, 2000, 9(12): 913-921.
No Suggested Reading articles found!