Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120503    DOI: 10.1088/1674-1056/22/12/120503
GENERAL Prev   Next  

Control of the patterns by using time-delayed feedback near the codimension-three Turing–Hopf–Wave bifurcations

Wang Hui-Juan (王慧娟), Wang Yong-Jie (王永杰), Ren Zhi (任芝)
School of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
Abstract  Control of the spatiotemporal patterns near the codimension-three Turing–Hopf–Wave bifurcations is studied by using time-delayed feedback in a three-variable Brusselator model. Linear stability analysis of the system shows that the competition among the Turing-, Hopf- and Wave-modes, the wavenumber, and the oscillation frequency of patterns can be controlled by changing the feedback parameters. The role of the feedback intensity Pu played on controlling the pattern competition is equivalent to that of Pw, but opposite to that of Pv. The role of the feedback intensity Pu played on controlling the wavenumber and oscillation frequency of patterns is equivalent to that of Pv, but opposite to that of Pw. When the intensities of feedback are applied equally, changing the delayed time could not alter the competition among these modes, however, it can control the oscillation frequency of patterns. The analytical results are verified by two-dimensional (2D) numerical simulations.
Keywords:  pattern formation      reaction diffusion system      time-delayed feedback  
Received:  27 July 2013      Revised:  22 September 2013      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
  47.54.-r (Pattern selection; pattern formation)  
Fund: Project supported by the National Nature Science Foundation of China (Grant No. 11205044) and the Fundamental Research Funds for the Central Universities (Grant No. 10ML40).
Corresponding Authors:  Wang Hui-Juan     E-mail:  whuijuanmail@126.com

Cite this article: 

Wang Hui-Juan (王慧娟), Wang Yong-Jie (王永杰), Ren Zhi (任芝) Control of the patterns by using time-delayed feedback near the codimension-three Turing–Hopf–Wave bifurcations 2013 Chin. Phys. B 22 120503

[1] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Ouyang Q 2010 Introduction of Nonlinear Science and Pattern Dynamics (Beijing: Peking University Press) p. 130 (in Chinese)
[3] Zhang X M, Fu M L, Xiao J H and Hu G 2006 Phys. Rev. E 74 015202
[4] Yang L F, Dolnik M, Zhabotinsky A M and Epstein I R 2002 J. Chem. Phys. 117 7259
[5] Boissonade J, Dulos E and Kepper P D 1995 Chemical Wave and Patterns (Dirdrecht: Kluwer Press) p. 221
[6] Dong L F, Fan W L, Wang S, Ji Y F, Liu Z W and Chen Q 2011 Phys. Plasmas 18 033506
[7] He Y F, Ai B Q and Liu F C 2013 Phys. Rev. E 87 052913
[8] Guo W Q, Qiao C, Zhang Z M, Ouyang Q and Wang H L 2010 Phys. Rev. E 81 056214
[9] Naknaimueang S, Allen M A and Müller S C 2006 Phys. Rev. E 74 066209
[10] Kheowan O U, Zykov V S and Müller S C 2002 Phys. Chem. Chem. Phys. 4 1334
[11] Zhang H, Cao Z J, Wu N J, Ying H P and Hu G 2005 Phys. Rev. Lett. 94 188301
[12] Mikhailov A S and Showalter K 2006 Phys. Rep. 425 79
[13] Chen J X, Xu J R, Yuan X P and Ying H P 2009 J. Phys. Chem. B 113 849
[14] Schneider F M, Schöll E and Dahlem M A 2009 Chaos 19 015110
[15] Stanton L G and Golovin A A 2007 Phys. Rev. E 76 036210
[16] Handel A and Grigoriev R O 2005 Phys. Rev. E 72 066208
[17] Sen S, Ghosh P, Riaz S S and Ray D S 2009 Phys. Rev. E 80 046212
[18] He Y F, Ai B Q and Hu B B 2010 J. Chem. Phys. 133 114507
[19] Liu F C, Wang X F, Li X C and Dong L F 2007 Chin. Phys. 16 2640
[20] Ma J, Ying H P and Li Y L 2007 Chin. Phys. 16 955
[21] Hu H X, Li Q S and Li S 2007 Chem. Phys. Lett. 447 364
[22] Li Q S and Hu H X 2007 J. Chem. Phys. 127 154510
[23] Wang H J and Ren Z 2011 Commun. Theor. Phys. 56 339
[24] He Y F, Liu F C, Fan W L and Dong L F 2012 Chin. Phys. B 21 034701
[25] Ghosh P 2011 Phys. Rev. E 84 016222
[26] Vanag V K and Epstein I R 2002 J. Phys. Chem. A 106 11394
[27] Dong L F, Li B, Lu N, Li X C and Shen Z K 2012 Phys. Plasmas 19 052304
[28] Gurevich E L, Liehr A W, Amiranashvili S and Purwins H G 2004 Phys. Rev. E 69 036211
[1] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[2] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[3] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[4] Pattern formation in superdiffusion Oregonator model
Fan Feng(冯帆), Jia Yan(闫佳), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2016, 25(10): 104702.
[5] Numerical simulation and analysis of complex patterns in a two-layer coupled reaction diffusion system
Li Xin-Zheng (李新政), Bai Zhan-Guo (白占国), Li Yan (李燕), He Ya-Feng (贺亚峰), Zhao Kun (赵昆). Chin. Phys. B, 2015, 24(4): 048201.
[6] Controlling the transition between Turing and antispiral patterns by using time-delayed-feedback
He Ya-Feng(贺亚峰), Liu Fu-Cheng(刘富成), Fan Wei-Li(范伟丽), and Dong Li-Fang(董丽芳) . Chin. Phys. B, 2012, 21(3): 034701.
[7] Spatial pattern formation of a ratio-dependent predator–prey model
Lin Wang(林望). Chin. Phys. B, 2010, 19(9): 090206.
[8] Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal
Guo Yong-Feng(郭永峰),Xu Wei(徐伟), and Wang Liang(王亮). Chin. Phys. B, 2010, 19(4): 040503.
[9] Dendritic sidebranches of a binary system with enforced flow
Li Xiang-Ming(李向明) and Wang Zi-Dong(王自东). Chin. Phys. B, 2010, 19(12): 126401.
[10] Three-dimensional interfacial wave theory of dendritic growth: (I). multiple variables expansion solutions
Chen Yong-Qiang(陈永强), Tang Xiong-Xin(唐熊忻), and Xu Jian-Jun(徐鉴君). Chin. Phys. B, 2009, 18(2): 671-685.
[11] Three-dimensional interfacial wave theory of dendritic growth: (II). non-axi-symmetric global wave modes and selection criterion of pattern formation
Chen Yong-Qiang(陈永强), Tang Xiong-Xin(唐熊忻), and Xu Jian-Jun(徐鉴君). Chin. Phys. B, 2009, 18(2): 686-698.
[12] Laser-induced pattern formation from homogeneous polyisoprene solutions
Lin Dian-Yang(林殿阳), Li Ming(黎明), Wang Shu-Jie(王淑杰), and Lü Zhi-Wei(吕志伟). Chin. Phys. B, 2008, 17(6): 2156-2159.
No Suggested Reading articles found!