Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 014402    DOI: 10.1088/1674-1056/22/1/014402
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Prediction of heat transfer of nanofluid on critical heat flux based on fractal geometry

Xiao Bo-Qi (肖波齐)
School of Physics and Electromechanical Engineering, Sanming University, Sanming 365004, China
Abstract  Analytical expressions for nucleate pool boiling heat transfer of nanofluid in the critical heat flux (CHF) region are derived with taking into account the effect of nanoparticles moving in liquid based on the fractal geometry theory. The proposed fractal model for the CHF of nanofluid is explicitly related to the average diameter of nanoparticles, the volumetric nanoparticle concentration, the thermal conductivity of nanoparticles, the fractal dimension of nanoparticles, the fractal dimension of active cavity on the heated surfaces, the temperature, and the properties of fluid. It is found that the CHF of nanofluid decreases with the increase of the average diameter of nanoparticles. Each parameter of the proposed formulas on CHF has a clear physical meaning. The model predictions are compared with the existing experimental data, and a good agreement between the model predictions and experimental data is found. The validity of the present model is thus verified. The proposed fractal model can reveal the mechanism of heat transfer for nanofluid.
Keywords:  nanofluid      fractal geometry      heat transfer  
Received:  31 May 2012      Revised:  20 June 2012      Accepted manuscript online: 
PACS:  44.35.+c (Heat flow in multiphase systems)  
  44.25.+f (Natural convection)  
  05.45.Df (Fractals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11102100), the Natural Science Foundation of Fujian Province, China (Grant No. 2012J01017), and the Scientific Research Special Foundation for Provincial University of Education Department of Fujian Province, China (Grant No. JK2011056).
Corresponding Authors:  Xiao Bo-Qi     E-mail:  xiaoboqi2006@126.com

Cite this article: 

Xiao Bo-Qi (肖波齐) Prediction of heat transfer of nanofluid on critical heat flux based on fractal geometry 2013 Chin. Phys. B 22 014402

[1] Zhou D W 2004 Int. J. Heat Mass Transf. 47 3109
[2] Bang I C and Chang S H 2005 Int. J. Heat Mass Transf. 48 2407
[3] Kim H D, Kim J and Kim M H 2007 Int. J. Multiphase Flow 33 691
[4] Zhou X F and Gao L 2007 Chin. Phys. B 16 2028
[5] Liu Z H and Liao L 2008 Int. J. Heat Mass Transf. 51 2593
[6] Xiao B Q, Yu B M, Wang Z C and Chen L X 2009 Phys. Lett. A 373 4178
[7] Kim H, Ahn H S and Kim M H 2010 ASME J. Heat Transf. 132 061501
[8] Xiao B Q, Jiang G P and Chen L X 2010 Sci. in China Ser. G: Phys. Mech. Astron. 53 30
[9] Xiao B Q, Gao S H and Chen L X 2010 Fractals 18 409
[10] Mahendran V and Philip J 2012 Appl. Phys. Lett. 100 073104
[11] Xiao B Q, Fan J T, Jiang G P and Chen L X 2012 Acta Phys.Sin. 61 154401 (in Chinese)
[12] Katz A J and Thompson A H 1985 Phys. Rev. Lett. 54 1325
[13] Yu B M and Cheng P 2002 Int. J. Heat Mass Transf. 45 2983
[14] Yu B M and Cheng P 2002 ASME J. Heat Transf. 124 1117
[15] Wang B X, Zhou L P and Peng X F 2003 Int. J. Heat Mass Transf. 46 2665
[16] Feng Y J, Yu B M, Zou M Q and Zhang D M 2004 J. Phys. D: Appl. Phys. 37 3030
[17] Xiao B Q and Yu B M 2007 Int. J. Multiphase Flow 33 1126
[18] Xiao B Q and Yu B M 2007 Int. J. Therm. Sci. 46 426
[19] Wu J S and Yu B M 2007 Int. J. Heat Mass Transf. 50 3925
[20] Xiao B Q, Yu B M and Wang Z C 2008 Fractals 16 1
[21] Yun M J, Yu B M and Cai J C 2008 Int. J. Heat Mass Transf. 51 1402
[22] Wu J S, Yu B M and Yun M J 2008 Transp. Porous Media 71 331
[23] Yun M J, Yu B M and Cai J C 2009 Int. J. Heat Mass Transf. 52 3272
[24] Wu J S, Yin S X and Zhao D Y 2009 Chin. Phys. Lett. 26 064701
[25] Cai J C, Yu B M, Zou M Q and Mei M F 2010 Chem. Eng. Sci. 65 5178
[26] Cai J C, Yu B M, Mei M F and Luo L 2010 Chin. Phys. Lett. 27 054701
[27] Yun M J, Yu B M, Lu J D and Zheng W 2010 Int. J. Heat Mass Transf. 53 3570
[28] Cai J C, Yu B M, Zou M Q and Luo L 2010 Energy Fuels 24 1860
[29] Cai J C and Yu B M 2010 Fractals 18 417
[30] Yun M J, Yu B M, Zheng W and Yuan J 2011 Acta Phys. Sin. 60 024703 (in Chinese)
[31] Cai J C and Yu B M 2011 Transp. Porous Media 89 251
[32] Yan H X and Jin B 2012 Eur. Phys. J. E 35 36
[33] Cai J C, You L J, Hu X Y, Wang J and Peng R H 2012 Int. J. Mod. Phys. C 23 1250054
[34] Yun M J, Zheng W, Li Y B and Li Y 2012 Acta Phys. Sin. 61 164701 (in Chinese)
[35] Yan H X and Jin B 2012 Int. J. Solids Struct. 49 436
[36] Cai J C, Hu X Y, Standnes D C and You L J 2012 Colloids Surf. A: Physicochem. Eng. Aspect 414 228
[37] Jiang G P, Jiao C J and Xiao B Q 2012 Acta Phys. Sin. 61 026701 (in Chinese)
[38] Jiang G P, Tao W J, Huan S and Xiao B Q 2012 Acta Phys. Sin. 61 070503 (in Chinese)
[39] Kou J L, Tang X M, Zhang H Y, Lu H J, Wu F M, Xu Y S and Dong Y S 2012 Chin. Phys. B 21 044701
[40] Maxwell J C 1954 A Treatise on Electricity and Magnetism (Cambridge: Oxford University Press)
[41] Tomitika S, Aoi T and Yosinabu H 1953 Proc. R. Soc., London, Ser. A 129 233
[42] Jang S P and Choi S U S 2004 Appl. Phys. Lett. 84 4316
[43] Chon C H, Kihm K D, Lee S P and Choi S U S 2005 Appl. Phys. Lett. 87 153107
[44] Xiao B Q, Wang Z C, Jiang G P, Chen L X, Wei M J and Rao L Z 2009 Acta Phys. Sin. 58 2523 (in Chinese)
[45] Xiao B Q 2010 Mod. Phys. Lett. B 24 1229
[46] Zhang W M, Meng G, Wei X Y and Peng Z K 2012 Phys. Lett. A 376 789
[47] Yang L, Du K, Ding Y H, Cheng B and Li Y J 2012 Powder Technology 215-216 210
[48] Gui N, Ji Z L and Gao J S 2012 Heat and Mass Transfer
[49] Cai J C, Yu B M, Zou M Q and Mei M F 2010 Chin. Phys. Lett. 27 024705
[50] Costa L D F 2004 Int. J. Mod. Phys. C 15 175
[51] Nguyen H, Chopard B and Stoll S 2007 Int. J. Mod. Phys. C 18 732
[52] Dong X J, Hu Y F and Wu Y Y 2010 Chin. Phys. B 19 13601
[53] Yuan Y, Shi S H and Luo M K 2011 Chin. Phys. B 20 040509
[54] Tang X W, Sun Z F and Cheng G C 2012 Chin. Phys. B 21 100201
[55] Gouravaraju S and Ganguli R 2012 Appl. Math. Comput. 218 10435
[56] Mikic B B and Rohsenow W M 1969 ASME J. Heat Transf. 91 245
[57] Hsu Y Y 1962 ASME J. Heat Transf. 84 207
[58] Li L, Yu G M, Chen Z Y and Chu X S 2010 Journal of Central South University of Technology 17 852 (in Chinese)
[59] Li L and Chu X S 2011 China Ocean Engineering 25 357 (in Chinese)
[1] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[2] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[3] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[4] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[5] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[6] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[7] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[8] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[9] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[10] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[11] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[12] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[13] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[14] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[15] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
No Suggested Reading articles found!