Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 014501    DOI: 10.1088/1674-1056/22/1/014501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Binary collision approximation for solitary waves in a Y-shaped granular chain

Chen Qiong (陈琼)a, Yang Xian-Qing (杨先清)a, Zhao Xin-Yin (赵新印)a, Wang Zhen-Hui (王振辉)a, Zhao Yue-Min (赵跃民)b
a College of Science, China University of Mining and Technology, Xuzhou 221116, China;
b School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China
Abstract  We implement a binary collision approximation to study solitary wave propagation in a two-dimensional double Y-shaped granular chain. The solitary wave was transmitted and reflected when it met the interface of the bifurcated branches of the Y-shaped granular chains. We obtain analytic results of the ratios of the transmitted and reflected speeds to the incident speed of the solitary wave, the maximum force between two neighbor beads in solitary wave, and the total time took by the pulse to pass through each branch. All of the analytic results are in good agreement with experimental observations by Daraio et al. [Phys. Rev. E 82 036603 (2010)]. Moreover, we also discuss the delay effects on the arrival of split pulses, and predict the recombination of the split waves traveling in branches in the final stem of asymmetric systems. The prediction of pulse recombination is verified by our numerical results.
Keywords:  Y-shaped granule chain      solitary wave      binary collision approximation  
Received:  03 June 2012      Revised:  07 July 2012      Accepted manuscript online: 
PACS:  45.70.-n (Granular systems)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
Fund: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 50921002) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2010LKWL09).
Corresponding Authors:  Yang Xian-Qing     E-mail:  xianqyang@163.com

Cite this article: 

Chen Qiong (陈琼), Yang Xian-Qing (杨先清), Zhao Xin-Yin (赵新印), Wang Zhen-Hui (王振辉), Zhao Yue-Min (赵跃民) Binary collision approximation for solitary waves in a Y-shaped granular chain 2013 Chin. Phys. B 22 014501

[1] Sen S, Hong J, Bang J, Acalos E and Doney R 2008 Phys. Rep. 462 21
[2] Carretero-Gonález R, Khatri D, Porter M A, Kevrekidis P G and Daraio C 2009 Phys. Rev. Lett. 102 024102
[3] Hong J 2002 Physica A 315 187
[4] Wang P J, Xia J H, Liu C S, Liu H and Yan L 2011 Acta Phys. Sin. 60 014501 (in Chinese)
[5] Hong J 2005 Phys. Rev. Lett. 94 108001
[6] Daraio C, Nesterenko V F, Herbold E B and Jin S 2006 Phys. Rev. Lett. 96 058002
[7] Doney R and Sen S 2006 Phys. Rev. Lett. 97 155502
[8] Vergara L 2006 Phys. Rev. E 73 066623
[9] Wang P J, Xia J H, Li Y D and Liu C S 2007 Phys. Rev. E 76 041305
[10] Khatri D, Daraio C and Rizzo P 2008 Proc. SPIE 7292 69340U
[11] Daraio C, Nesterenko V F, Herbold E B and Jin S 2005 Phys. Rev. E 72 016603
[12] Nesterenko V F, Daraio C, Herbold E B and Jin S 2005 Phys. Rev. Lett. 95 158702
[13] Daraio C, Ngo D, Nesterenko V F and Fraternali F 2010 Phys. Rev. E 82 036603
[14] Rosas A and Lindenberg K 2004 Phys. Rev. E 69 037601
[15] Hascoet E and Herrmann H J 2000 Eur. Phys. J. B 14 183
[16] Daraio C and Nesterenko V F 2006 Phys. Rev. E 73 026612
[17] Chen Q, Yang X Q, Wang Z H and Zhao X Y 2012 Chin. Phys. Lett. 29 014501
[18] Harbola U, Rosas A, Esposito M and Lindenberg K 2009 Phys. Rev. E 80 031303
[19] Harbola U, Rosas A, Romero A H, Esposito M and Lindenberg K 2009 Phys. Rev. E 80 051302
[20] Harbola U, Rosas A, Romero A H and Lindenberg K 2010 Phys. Rev. E 82 011306
[21] Chen Q, Yang X Q, Zhao X Y, Wang Z H and Zhao Y M 2012 Acta Phys. Sin. 61 044501 (in Chinese)
[22] Pinto I L D and Rosas A 2010 Phys. Rev. E 82 031308
[23] Chatterjee A 1999 Phys. Rev. E 59 5912
[1] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[2] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[5] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[6] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[7] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[8] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[9] Envelope solitary waves and their reflection and transmission due to impurities in a granular material
Wen-Qing Du(杜文青), Jian-An Sun(孙建安), Yang-Yang Yang(杨阳阳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(1): 014501.
[10] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[11] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[12] Fully nonlinear (2+1)-dimensional displacement shallow water wave equation
Feng Wu(吴锋), Zheng Yao(姚征), Wanxie Zhong(钟万勰). Chin. Phys. B, 2017, 26(5): 054501.
[13] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[14] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng (陈耀登), Yang Hong-Wei (杨红卫), Gao Yu-Fang (高玉芳), Yin Bao-Shu (尹宝树), Feng Xing-Ru (冯兴如). Chin. Phys. B, 2015, 24(9): 090205.
[15] Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
Reza Mohammadi. Chin. Phys. B, 2015, 24(5): 050206.
No Suggested Reading articles found!